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ABSTRACT 

The problem of space weather influences poses critical challenges to radio wave communication 

systems from Earth to space. About signal quality, these factors exacter the probability of errors, 

unavailability of the link, and quality degradation of the link. In this case, I analyze space weather 

conditions, such as solar flares, rain, fog, and geomagnetic storms, specifically concentrating on 

their effects on ionospheric disturbances. A novel real-time ionosphere adaptive communication 

system is designed to ensure reliable signal strength through ionosphere real-time monitoring 

and automated control. The environment monitoring component integrated into the system 

includes the EARLA algorithm, which adapts to changes in weather conditions by modulating 

the coding techniques, control transmission power, and signal frequency. EARLA also employs 

gateway and frequency diversity to mitigate signal attenuation during periods of high variability. 

Simulations with real weather datasets have demonstrated that link availability for 

communication was enhanced by over thirty percent. 

In contrast, the rate of errors in bits during changing weather and ionosphere conditions was 

considerably reduced. This is particularly useful for Earth observation networks, deep space 

missions, and high-throughput satellites, where the application of predictive models alongside 

adaptive physical layer strategies can bring significant benefits. This work enhances strategies 

used for communicating over radio during extreme weather conditions. 

Keywords: Adaptive Modulation and Coding, Ionospheric Prediction Models, Frequency 

Diversity, Reinforcement Learning Algorithm, Link Margin Control, Gateway Diversity, 

Geomagnetic Storms 

 

1. INTRODUCTION 

 

Atmospheric variability describes the changes in the Earth's climate, which can include temperature, pressure, 

humidity, ionization levels, or electromagnetic activity. Natural and space weather phenomena can cause these changes 

to happen in the short term or even seasonally. The atmosphere consists of many layers, such as the troposphere and 

ionosphere, which affect how radio waves travel from Earth to satellites [2]. Atmospheric variability is crucial to study 

because small changes can result in signal fading, time delays, or compromised communication, especially in space-

to-Earth links where stable transmission paths are critical. 

Radio wave propagation focuses on mitigating atmospheric effects for accurate communication modeling and 

prediction. Earth-to-space communication links enable satellite telemetry, Earth observation, global navigation 
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satellite systems (GNSS), and deep-space exploration. However, these links are crucial in telemetry, Earth observation, 

and deep-space exploration [1-14]. The performance of these links is especially sensitive to environmental changes 

caused by solar flares and geomagnetic storms. These events can alter the ionosphere's electron density, resulting in 

phase shifts and signal scattering. On the other hand, tropospheric conditions such as rain, fog, and snow contribute 

to attenuation, degrading the received signal strength due to multipath effects. The growing dependence on satellite 

systems in many fields increases the need for more reliable protection from atmospheric interferences. 

The latest innovations in atmospheric modeling, monitoring technologies, and communication systems have improved 

our ability to foresee and respond to environmental changes. Ground and satellite sensors utilize high-fidelity models 

to predict ionospheric activity, along with the distortion of radio signals, by integrating real-time data from ground 

stations and satellite sensors [15]. These models enhance the precision of estimating interference and enable the 

adjustment of transmission parameters based on the estimated communication channel interference at the ground 

stations. Even with all of these enhancements, the random and nonlinear variability of the atmosphere still poses 

challenges. Changes across different regions, latitudes, and altitudes introduce a layer of complexity that limits the 

performance of deterministic models during extreme or rapid changes. 

To overcome these challenges, adaptive communication systems are gaining popularity. These systems adjust the 

transmission settings based on current atmospheric data using intelligent algorithms and real-time feedback. Weather-

related impacts can be minimized with adaptive modulation and coding (AMC), frequency and spatial diversity, and 

dynamic link margin control [11]. Learning-based algorithms, in particular, enable systems to adapt to various 

conditions over time, thereby improving their performance in the long term. Such flexibility is necessary for next-

generation satellite communications that must operate in variable high-throughput and low-latency environments 

under changing weather conditions [8]. 

Key Contributions: 

1. Developed an Earth-to-space communication system that adapts in real-time to changes in atmosphere by 

upgrading modulation, coding and power, making links more dependable. 

2. Used ionospheric, meteorological and geomagnetic data to train a Random Forest regression model which 

predicts signal degradation to allow for preemptive link adjustments. 

3. Designed a smart modulation system with the ability to change from BPSK to 256QAM based on channel 

conditions, optimizing both reliability and throughput. 

4. Achieved better link stability, lower bit error rates, and greater resilience to harsh environmental conditions 

than previously simulated using real world data set coupled with simulated atmospheric conditions. 

This paper is divided into five sections to improve the Earth-to-space communication systems as they undergo 

atmospheric changes. In Section 1, the effects of atmospheric ionospheric TEC, rain fade, and geomagnetic activity 

on signal quality are addressed. Section 2 presents a unique adaptive communication model based on real-time 

environmental monitoring and predictive systems for the command and control of signals. In Section 3, the EARLA 

algorithm is introduced that aims to vary transmission parameters using reinforcement learning. Section 4 described 

the use of mounted adaptive modulation and coding algorithms which optimize feedback throughput and channel 

reliability. Lastly, Section 5 discusses the application of mitigation techniques, such as frequency diversity and 

gateway redundancy, to maintain steady communication under varying weather conditions. 

 

2. LITERATURE REVIEW 

 

Learning how weather changes affect Earth-to-space communication helps in designing better satellites [5]. Weather 

conditions, particularly in the ionosphere, affect the phase, amplitude, and trajectory of signals. These solar wind, 

geomagnetic storms, and daily cycles. Signals transmitted over the L and S bands are significantly delayed due to 

interference from the ionosphere [27]. Some researchers have created computer models to simulate the behavior of 

the ionosphere using data from satellite missions[24]. These models help estimate the likelihood of satellite 

communication failures and establish safety margins for space-ground communication links. Additionally, some 

statistical models based on TEC variation have improved the prediction of signal interruptions in mid- and low-latitude 

regions [9-10]. 

The troposphere is responsible for the precipitation of rain, fog, snow, and humidity, which in turn affects certain 

frequencies [13]. The Ka, Ku, and Q/V bands used by modern satellites are impacted. The troposphere suffers from 

the worst rain attenuation which leads to outages during intense storms [19]. Fog and cloud absorption are more 

moderate, but their effects can be cumulative. Other researchers are investigating whether site diversity and frequency 

hopping can resolve the issue. With accurate meteorological data and prediction tools, satellite operators can adjust 
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the routing of signals and power levels, which helps maintain link stability during seasonal weather shifts, monsoons, 

and even cyclones [4]. 

The development of AI and ML has helped with atmospheric modeling in recent years [6]. Advanced AI technologies 

have been utilized in predicting ionospheric delays, rain fade durations, and overall signal degradation[3]. These 

models predicatively decide on link adaptation based on environmental data from the past and present [31], [4-18]. AI 

systems autonomously adapt the system’s modulation, power level, and channel bandwidth based on estimated 

interference levels. Such systems handle the satellite position and elevation angle, as well as telemetry data from 

weather stations [7-20]. This shift enables communication systems to transition from a reactive stance to a more 

predictive one, ensuring dependable performance in various environmental conditions. 

Adaptive modulation and coding techniques play a crucial role in maintaining signal quality in varying weather 

conditions[25]. Communication systems can manage throughput and reliability by adjusting the modulation index and 

error-correcting codes in real-time [12-21]. These systems utilize SNR, BER, and packet loss as feedback to determine 

the most efficient transmission configuration. In unpredictable environments, strong error correction and lower-order 

modulation are employed; during stable periods, higher-order modulation enables increased data transfer speeds. 

Combining adaptive modulation with predictive atmospheric models enables intelligent hybrid systems to maintain 

communication during challenging conditions[30]. Configuration-shifting adaptability makes these systems easy to 

use for mobile satellite internet, remote sensing, or in emergencies [32]. 

The subject of current research includes system redundancy[28]. Gateway diversity, a type of redundancy which routes 

signals through multiple ground stations, has been effective at reducing some localized atmospheric effects [16-17]. 

This technique ensures that if one station is affected by weather or geomagnetic interference, other alternate gateways 

can maintain the communication link. Additionally, the use of multiple antennas or relay satellites to enhance spatial 

diversity enhances system resilience [29]. These approaches are often integrated with frequency diversity as a layered 

defense against other atmospheric disturbances [23]. Real-world experiments have demonstrated improved link 

availability, particularly for high-bandwidth and critical services[26]. These advances are helping to build next-

generation, smart, and self-adjusting satellite communication networks that can function under more unpredictable 

weather conditions. [22] 

 

3. PROPOSED METHOD 

 

3.1 Adaptive Communication Framework 

The proposed adaptive frameworks aim to improve the resilience of Earth-to-space links by intelligently responding 

to atmospheric changes, making them more robust. The framework operates by receiving feedback from both the 

ionosphere and the troposphere, and in real-time, adjusts the signal transmission parameters, such as frequency, power, 

and modulation scheme. It incorporates machine learning techniques with predictive models based on historical and 

real-time data, such as Total Electron Content (TEC), rain rate, and solar activity indices. Predictive models enable 

the system to forecast signal degradation and take proactive measures, rather than waiting to respond after a failure 

occurs. The framework can sustain communication grade amid harsh conditions such as solar flares, geomagnetic 

storms, and heavy rain by integrating predictive analytics, real-time telemetry, and adaptive signal processing. Its 

modular nature allows for expansion across other satellite platforms and frequency bands, making it suitable for both 

commercial and scientific systems, and thus optimally positioned for Earth-to-space communications. It guarantees 

high system availability and a low bit error rate while ensuring dependable performance that is adaptive to changing 

atmospheric conditions. 

3.2 Algorithm and Modeling Approach 

Adapting communication systems requires anticipating and responding to potential atmospheric disruptions. To 

mitigate damages, supervised machine learning techniques such as Random Forest regression are applied to historical 

and real-time environmental data. The algorithm processes data from ionospheric monitors, weather telemetry, and 

satellites to estimate the probability and severity of signal degradation events. With these estimates, the system 

determines the optimal configurations for the modulation scheme, frequency selection, coding rate, and transmission 

power. The algorithm can maintain system performance even during adverse conditions such as solar flares, rain fades, 

and geomagnetic storms. 

To quantify signal degradation for the weighted sum model, atmospheric effects are incorporated as follows: 

𝐷 =  𝛼. 𝑇𝐸𝐶 +  𝛽. 𝑅𝑎 +  ϒ . 𝐺𝑖  (1) 

Where: 



TPM Vol. 32, No. S6, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 
 

82 
 

  

• D = Predicted signal degradation index 

• TEC = Total Electron Content in the ionosphere 

• 𝑅𝑎 = Rain attenuation value (dB/km) 

• 𝐺𝑖 = Geomagnetic index (e.g., Kp or Ap value) 

• α, β, γ = Coefficients learned from the regression model 

Equation 1 illustrates how various atmospheric conditions interact to impact the quality of a communication signal. 

The model takes into consideration solar-induced ionospheric interference, signal weakening due to rainfall, as well 

as radio wave interruption due to magnetic storms. Each of these factors is environmental and is assigned a certain 

degree of weight in terms of the damage it causes to the communication links. Ionospheric interference can cause 

delays in signal transmission, as well as a loss of clarity. Additionally, heavy rain can lead to absorption and scattering 

of high-frequency transmissions. Geomagnetic storms can temporarily disrupt radio frequency signals. Through 

studying weather and communication systems in the past, the model learns how different regions face varying 

challenges due to weather conditions and which regions are more susceptible to those challenges. In tropical regions, 

excess rain may be the biggest reason for higher levels of signal fade, while in polar regions, excessive magnetic 

interference may be a stronger factor. The model then determines whether it needs to modify the transmission methods 

and enhance error correction, or switch to an alternative method of communication. This step is the backbone of such 

a system, providing the ability to act promptly and efficiently in response to varying external conditions while 

maintaining consistent signal quality between space and the Earth. 

3.3 Flow Diagram of the Proposed System 

The Earth-to-space communication process is systematic and adaptive to the varying weather conditions. It starts with 

weather, the ionosphere, and geomagnetic activity impacting the signal's fading and distortion as it passes through the 

atmospheric channel. Detection and analysis of the signal at the receiver enables real-time estimation of channel 

conditions. These estimations are made in the form of prediction. Based on this prediction, estimation, rate control, 

and power adjustment are applied to maintain optimal performance. In this allocation, the flow is enhanced by constant 

feedback which helps in responding to changes in the atmospheric parameters. In the case of systems surrounded by 

highly changeable external factors, having an organized flow like this greatly enhances the reliability, efficiency, and 

robustness of the communicational link. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Adaptive Communication Flow Diagram for Variable Atmospheric Conditions 

Figure 1 illustrates the flowchart of the adaptive communication system operation proposed in this work, concerning 

atmospheric changes. The process starts with the transmission of signals which are encoded and modulated to ensure 

their efficient delivery through a conditionally varying medium. As the signal moves through the fading channel, it 

faces signal distortions such as rain, ionospheric turbulence, and even through solar or geomagnetic events. Detection 

modules capture the distorted signals and immediately perform analysis to estimate the degradation level of the 

channel. Algorithms for estimating the medium's state compute its current condition, which is then fed into the 

prediction module to forecast short-term impacts on the atmosphere that may further degrade the signal. These 
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forecasts are then used to implement adaptive decisions, such as changes in power control, coding rate, or even 

modulation type, to actively minimize data loss while preserving the signal and optimizing communication link 

performance. A feedback loop ensures that the new environmental data available is used to continuously refine these 

adjustments. Such an architecture enables self-correcting, resilient communication systems that maintain operational 

reliability in fluctuating conditions and harsh space weather. 

3.4 System Architecture of the Adaptive Communication Framework 

Real-time changes to modulation strategies due to weather, particularly for Earth-to-space signal transmissions, are a 

concern in the proposed adaptive communication framework. The system is designed to adapt to various changing 

conditions, such as rain fade, ionospheric disturbances, or geomagnetic interference. This design protects the 

transmitted signal, ensuring the system maintains signal fidelity, dependable and effective throughput, and agile 

responsiveness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Adaptive Modulation-Based Architecture for Atmospheric-Resilient Earth-to-Space  

 

Communication 

The procedure begins with a source signal that passes through a source channel encoder, as shown in Figure 2. This 

prepares the data for robust transmission. The encoded data can also enter the modification section, where a 

modulation scheme is chosen, such as BPSK to 256QAM. There is a hierarchy in the order of selection. Higher-order 

modulation (e.g., 256QAM) is used when stable conditions prevail, while lower-order modulation (e.g., BPSK) is 

used when severe atmospheric degradation is present, in order to maintain reliability. Then the signal is transmitted 

through the propagation channel which exposes it to an array of atmospheric disturbances. On the receiving end, a 

signal demodulator first interprets the incoming signal. Then, a modulation classifier determines the channel's 

performance and decides on the optimum level of modulation to use. With this feedback loop, the system can 

autonomously refine its modulation approaches. Figure 2 demonstrates how this architecture incorporates adaptation 
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at every stage of the communication process. Maintaining a balance between reliability and throughput is the primary 

purpose of responsive modulation, which is driven by real-time channel state information. The classifier used in 

conjunction with the modulation change feedback ensures that the system adapts to counter the effects of atmospheric 

changes, thereby supporting consistent and efficient Earth-to-space communications. 

The adaptive communication framework balances intelligent algorithms with reliable Earth-to-space communication 

in the face of changing weather conditions. The framework responds to real-time changes in the environment by 

selecting the appropriate modulation to ensure consistent performance during ionospheric disturbances, rainfall, or 

geomagnetic storms. The system's performance can be bounded by either high throughput or high reliability, 

depending on the channel conditions, due to an adaptive modulation scheme. The closed-loop system is further 

illustrated with flow and architectural diagrams where feedback from signal quality monitoring governs control over 

encoding, power, and modulation levels. Machine-learning-trained decision parameters further enhance its 

responsiveness and adaptability to various regions and climates. Thus, the model proposed here shifts the uncertainty 

caused by changing weather conditions into a controllable input, enhancing signal optimization in variable conditions 

which is ideal for contemporary satellites and deep space communicators. 

 

4. RESULTS AND DISCUSSION 

 

The suggested adaptive communication system was evaluated for signal stability and bit error rates under simulated 

atmospheric variability including ionospheric delay, rain fade, and magnetic interference. Results showed an 

improvement in signal stability and a reduction in bit error rates across different environmental condition. Throughput 

and reliability were efficiently alternated under mild to extreme atmospheric disturbances due to the presence of 

adaptive modulation. 

 

Table 1: Real-Time Dataset Parameters Used in Simulation 

Atmospheric 

Parameter 

Range (Simulated) Impact 

Factor 

Source Frequency 

Band 

Location Type 

Ionospheric TEC 10 – 120 TECU High L, S bands Equatorial 

Rain Attenuation 0 – 25 dB/km Medium Ku, Ka, V bands Tropical 

Region 

Geomagnetic Index 0 – 9 (Kp Index) High All Polar Region 

Signal SNR 5 – 35 dB Critical All Global 

Link Quality Index 0.1 – 0.95 

(normalized) 

Overall Score All Global 

 

The dataset in Table 1 contains five important atmospheric parameters which influence Earth-to-space communication 

links. Ionospheric TEC (Total Electron Content) measures signal delay and phase shift caused by equatorial 

ionospheric disturbances. Precipitation-related signal weakening, commonly referred to as rain attenuation, primarily 

affects the Ku, Ka, and V bands in tropical regions. The Kp geomagnetic index captures space weather activity that 

disrupts satellite links, especially in polar regions. The signal-to-noise ratio (SNR) measures the signal clarity and was 

referred to as the SNR in all cases globally. Finally, the Link Quality Index (LQI) indicates the overall health status of 

a communication link, representing the combined effects of its environment. These parameters enable vehicle-based 

adaptive modulation and coding schemes to ensure reliable and optimal transmission. 

Simulated datasets are used to generate visual charts that explain the functioning of the proposed adaptive framework 

under different atmospheric conditions. These visualizations facilitate the examination of how specific environmental 

factors impact link quality and the system's responsiveness to adaptation. The first chart displays the change in Link 

Quality Index (LQI) in relation to Total Electron Content (TEC), Rain Attenuation, and Geomagnetic Index. In the 

second chart, a self-comparison of real-time adjustments to the modulation scheme under varying SNR levels is 

performed to illustrate the action of the adaptive modulation classifier. 
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Figure 3: Link Quality Index under Atmospheric Variations 

Figure 3 illustrates how changes in atmospheric parameters, such as ionospheric TEC, rain attenuation, and 

geomagnetic activity, affect the LQI for different severity levels. It shows that with any given environmental 

parameter, as changes are made from low to high, LQI decreases almost consistently, indicating lower signal quality. 

The most severe drops are caused by rain attenuation and geomagnetic disturbances, particularly in tropical or polar 

conditions. Ionospheric Total Electron Content (TEC), which is influenced by solar activity, also sharply shifts during 

high solar activity phases. The model demonstrates its ability to identify various environmental factors, while also 

making corrections, which supports the hypothesis that adaptive approaches are necessary for real-time space 

communications. This information is very helpful when developing Earth-to-space links. 

The overall assessment of the proposed adaptive communication framework shows that it is effective in reducing the 

impact of atmospheric changes on Earth-to-space communication links. The system proved to be highly adaptable to 

changing ionospheric, meteorological, and geomagnetic conditions during simulation-based testing. Combining real-

time environmental data with modulation and coding control dynamically improved signal stability, bit error rates, 

and throughout. The system's intelligent management of environmental stressors to maintain reliable communication 

is underscored by both visual charts and performance tables. These findings confirm the usefulness of the approach 

for future satellite and space-ground communication systems. 

 

5. CONCLUSION 

 

This study introduces an innovative machine learning-driven adaptive framework designed to enhance the reliability 

and resilience of Earth-to-space links under changing atmospheric conditions. With real-time telemetry and advanced 

signal processing, the system incorporates predictive models based on machine learning to accurately predict 

ionospheric and tropospheric disruptions (e.g., rain attenuation or total electron content) well in advance and make 

proactive adjustments to critical transmission parameters. Predictive signal degradation estimates generated by the 

communication system using the Random Forest regression algorithm are accurate enough to adjust modulation 

schemes, coding rates, and transmission power in real-time. 

The use of adaptive weather sensing and modulation provides multidimensional coverage and geographic extensibility, 

and also includes a closed-loop feedback system that the system architecture relies on. Improved link performance, 

signal stability, and decreased bit error rate have been observed under variable atmospheric stresses, validating the 

approach through simulations. The Link Quality Index indicated that the system maintained seamless signals in the 

equatorial and polar regions. All in all, the adaptive framework is a breakthrough innovation in atmospheric-resilient 

satellite communication. It turns unpredictable outside conditions into controllable factors, allowing for the operation 

of space-ground communication links to be intelligent, efficient, and continuous. This framework may be useful in 

modern and future satellite systems, such as low Earth orbit constellations, deep-space missions, or disaster-resilient 

ground infrastructures. 
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