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ABSTRACT 

The communication technologies of millimeter waves and terahertz are transforming wireless 

systems as wireless networks become faster and more efficient. Enabling 6G applications, self-

driving cars, real-time remote sensing, and ultra high-definition video streaming all become 

possible. However, mm-wave and THz signals still struggle with severe obstructions in urban 

areas. Buildings, cars, and even vegetation can block, reflect, scatter, or attenuate these signals. 

For effective communication, these environments must be understood, and models designed 

around them need to be created. Many traditional approaches to modeling lack sufficient flexibility 

to account for the changing conditions that are typical of urban areas. This research proposes a 

machine learning (ML) framework for analyzing and predicting signal propagation in various 

urban environments. We collected real-world data from various urban environments, performed 

feature extraction, and applied our framework by training and testing multiple machine learning 

(ML) algorithms. Prediction accuracy, scalability, and computing cost were evaluated, among 

other factors. Findings confirmed that ML models, unlike traditional models, can be trained to 

recognize the characteristics of an environment and predict them more reliably. 

Additionally, this approach enables agile and flexible planning for next-generation wireless 

networks.This research aims to develop smart communication systems by integrating concepts 

from smart city environmental systems with signal propagation theory. In particular, designing 

smart city frameworks for real-time model expansion and validation across different geographic 

regions remains a work in progress. 

Keywords: mm Wave propagation, THz communication, supervised learning, signal attenuation, 

environmental modeling, 6G networks, propagation prediction. 

 

I. INTRODUCTION 

 

The development of wireless communication has undergone a significant leap with the introduction of millimeter-

wave and terahertz technologies, due to the improvements they bring to data rate, bandwidth, and signal resolution. 

They are used in high-speed communication systems, for instance, in autonomous vehicles, smart vehicles, and video 

streaming services [1]. mmWave and THz technologies have emerged as crucial enablers. Their high frequency 

spectrum allows for compact antenna arrays and beamforming techniques, enhancing spatial reuse and reducing 

latency. However, their high susceptibility to environmental absorption, diffraction, and blockage limits the adoption 

of these technologies. Addressing these urban propagation challenges is vital to harnessing the full communication 

potential [3]. 
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Cities are intricate systems where buildings, cars, roadways, and construction materials impact signal reception. Signal 

reflections can undermine performance and connectivity in high-frequency wireless communications systems. 

Therefore, modeling these urban features becomes crucial for network design, planning, and optimization. Predictive 

models allow the systems to adjust in real-time based on dynamic urban scenarios [4]. Ensuring these systems adapt 

to these variations enhances performance, improves service quality, and strengthens the overall user experience. 

Characterizing urban environments enables the translation of physical and spatial information into usable, actionable 

insights for wireless network placement and construction [29]. Accurate data helps bolster adaptive technologies that 

leverage environmental data to streamline system functions [30]. 

The primary objective of this research is to utilize machine learning methods to characterize urban environments for 

signal propagation in the mm Wave and THz bands [5]. The focus is on gathering urban data, identifying critical urban 

features, training machine learning (ML) models, and predicting the behavior of signals under various conditions [21]. 

This work includes selecting algorithms, data cleansing, feature selection, model creation, cross-validation, and 

assessment of results [2]. This work aims to ensure better estimation precision for signal degradation and improve the 

adaptability of communication systems in wireless networks embedded in challenging terrains. The study advances 

knowledge for optimal network configurations, as well as practical applications, enhancing design decisions 

concerning communication network configurations [32]. It offers a versatile model that can be tailored to specific 

urban designs and geographic conditions [6][8]. This work takes the initial step toward more intelligent 

communication systems by addressing signal propagation challenges from both a technical and practical viewpoint. 

This outline is designed to provide a thorough explanation of the proposed methodology, along with its implications. 

The next review focuses on mmWave and THz propagation modeling as well as some of the more modern trends in 

ML-based environmental analysis [7][11]. After that, the proposed methodology is explained in detail, covering data 

collection, algorithm selection, system architecture, and relevant flow diagrams. In the results section, experimental 

analyses are presented, along with their respective metrics, and datasets and evaluation charts are included. The 

discussion section explains these results and their relevance to real-world situations, while also highlighting gaps and 

avenues for future exploration. A final remark provides a conclusion, highlighting the most important insights and 

emphasizing the role of ML in today's communication systems. The reasoning behind this orderly setup is to enable 

the readers to make sense of the problem, follow the solution, and consider the implications of the findings seamlessly 

[15]. 

The growing interest in applying machine learning (ML) to wireless communication systems has been spurred by an 

increase in processing capabilities, the availability of urban sensor data, and advancements in AI technologies [10][25]. 

ML algorithms are specifically well-suited for modeling metropolitan regions because they are capable of analyzing 

vast amounts of data and detecting intricate patterns [17]. These models can provide real-time updates and 

improvements as they evolve in response to changes in the infrastructure, weather, and human activities. Some smart 

city projects are already utilizing these technologies to automate resource consumption, manage traffic, and deliver 

public services. In this regard, the use of machine learning (ML) in mmWave and THz propagation modeling becomes 

self-evident [9][16]. There is a pressing need for advanced, resilient, adaptive, and effective communication networks 

that modern data-driven techniques can fulfill. This research aims to implement intelligent urban characterization, 

integrating practical applications into theoretical models. 

Key Contributions: 

• Developed complex models to more accurately analyze urban signal propagation by proposing an ensemble 

framework which combines CNN, ANN, and RNN-LSTM. 

• Used urban datasets relevant to space and time which are needed for the prediction of mm Wave and THz signals to 

capture real-time data. 

• Explained the models' reasoning concerning the environment's relevant features using SHAP values, Gini 

importance, and permutation techniques. 

• Creating a versatile framework ready to be integrated with 5G/6G deployment tools, which can be tailored to 

different urban settings, enabled me to do that. 

• The results, which demonstrate that standalone models cannot compete with ensemble models in predictive 

performance, are presented using metrics such as MAE, RMSE, and R² in urban settings that have never been 

encountered before. 

This paper focuses on the problem of mm Wave and THz signal propagation differences in complex urban settings 

using a machine learning predictive model technique. It begins with an introduction that explains the limitations of 

traditional propagation models, as well as the need for more flexible and data-driven approaches. In the Related Work 

Part, the most important ML and wireless modeling developments are covered. An ensemble learning approach based 

on real-world datasets and advanced training methodologies is detailed in the Proposed Method Section. Model 
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accuracy is significantly influenced by the extraction and selection of features, which are considered the most crucial 

elements. The Feature Importance section identifies the strongest environmental conditions that dominate signal 

behavior. In the final part, the proposed approach to next-generation wireless planning is shown to outperform 

traditional methods in terms of performance and generalization in planning wireless networks for the next generation. 

 

II. RELATED WORK 

 

The development of new wireless technologies has been driven by the need to support ultra-fast data transfer using 

millimeter waves and terahertz communication. These signals have been studied for their performance in cities 

because physical structures, such as buildings, can significantly impact their performance [26]. Many propagation 

models try to quantify the impact of common urban scattering, diffraction, and reflection [18]. Ray-tracing models 

have greatly contributed to the simulation of realistic propagation paths. Many of these conventional models do not 

adapt to environmental changes in real time, which limits their usefulness in dynamic conditions [27]. The exploration 

of data-driven approaches has been motivated by the need for more flexible and intelligent frameworks. 

To address the shortcomings of existing models, machine learning is now used to predict how signals travel through 

complex urban areas [20]. Through the use of empirical data, researchers have trained algorithms to construct 

predictive models that are flexible and can adapt to various settings. Support vector machines and neural networks 

have been utilized to model signal degradation and predict link quality in real-time [22]. These methods are effective 

in cases where traditional mathematical models encounter challenges due to the complexity and variability of the input 

data [24]. These successes underscore the increasing importance of artificial intelligence in wireless communication 

[12,23]. 

Some investigations have proposed hybrid models that incorporate environmental sensing technologies, such as 

LiDAR, with machine learning, on the assumption that their predictions would be more accurate. These systems 

enhance prediction accuracy by utilizing high-resolution spatial data, which enables them to generate feature-rich 

inputs for the learning algorithms. These systems have shown greater resilience to dense obstructions and non-line-

of-sight scenarios. Such methods are crucial for the development of smart cities, which require dense and dynamic 

urban environments. Incorporating 3D city models enhances predictions of signals by considering the vertical changes 

of buildings [13]. 

The consideration of features greatly impacts the effectiveness of machine learning models in signal propagation [19]. 

Algorithms have been developed to extract key features, such as material properties, angles of incidence, and reflection 

coefficients. Some of these features have been pruned using principal component analysis and mutual information to 

maintain important details while lowering dimensionality. This practice of precise feature selection sharpens model 

efficiency and interpretability. Additionally, automated feature extraction using deep learning is popular because it 

reduces the amount of data that requires manual annotation [14]. 

More recently, machine learning models focused on feature propagation and predictive analysis have been 

benchmarked and tested for accuracy [28]. More complex models, utilizing ensemble methods and deep learning, have 

performed better than simpler models in densely populated urban environments [31]. The models fetched major 

benchmarks using MAE, RMSE, and accuracy classification for further evaluation. Such analyses are beneficial in 

determining the optimal algorithm to use in urban planning or crisis communication systems. There is also a demand 

for model precision improvement through feedback loops and active learning. 

 

III. PROPOSED METHOD 

 

The machine learning approach described aims to accurately model urban environments for mm Wave and THz signal 

propagation. Urban regions comprise dynamic and complex terrains, including dense clusters of buildings, cars, 

vegetation, and people, which significantly influence the behavior of high-frequency signals. Although these 

frequencies offer tremendous data rates and bandwidth, they are heavily attenuated, scattered, and diffracted in dense 

metropolitan areas. The swiftly changing environments of cities and metropolitan areas are often poorly predicted by 

traditional empirical or theoretical propagation models, which causes degraded communication performance and 

unreliable connectivity. In contrast, the proposed system relies on actual datasets and powerful algorithms to model 

urban signal propagation more precisely and in real-time. This approach involves collecting signal propagation data 

across various urban areas, extracting key environmental features, and applying supervised learning techniques to 

build models that predict signal behavior. The designed models aim to evaluate and estimate the propagation 

characteristics of mm Wave and THz signals with various structural and environmental configurations. Furthermore, 

the approach is highly modular and scalable which makes it easy to incorporate new geographical or infrastructural 

locations. 
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Furthermore, it can be used to enhance the design and optimization of future wireless networks. The primary aim is 

to enhance accuracy, minimize planning duration for a network, and provide a solid analysis applicable to wireless 

communication systems involving future technologies, such as 6G and beyond. 

Selecting the most suitable set of machine learning techniques will be crucial for the model's efficiency. Due to their 

strength and ability to handle both structured and unstructured data, some of these algorithms include Random Forest 

(RF), Support Vector Machine (SVM), and Convolutional Neural Networks (CNN). These algorithms are trained on 

a comprehensive set of features, which includes spatial and physical environmental parameters such as distance to the 

receiver, building materials, surface reflectivity, line-of-sight (LOS) conditions, and the incident angle of the wave. 

Below is a general illustration of the predictive model: 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) +  𝜖    (1) 

Where: 

• y Predicted signal strength, path loss, or attenuation coefficient 

• 𝑥1, 𝑥2, … , 𝑥𝑛Independent input variables (e.g., distance, material type, urban density) 

• f Predictive function approximated by the chosen ML model 

• 𝜖 Residual error or random noise 

In Equation 1, the environmental factors are shown to affect the signal strength, also known as path loss. The function 

is approximated during the model training phase with a labeled dataset. This equation expresses the qualitative 

relationship between the metropolitan area variables and the signal parameters. Cross-validation and performance 

measures, such as MAE, RMSE, and R-squared, are used to evaluate the model. These evaluations confirm that the 

model is not tailored to the training data, but rather, it is capable of making predictions on new data. Additionally, 

feature importance analysis identifies the parameters that most significantly impact signal propagation, thereby aiding 

in future urban planning. Model interpretation and error analysis deepen the understanding of urban propagation 

phenomena and improve wireless networks. 

The framework's proposed architecture handles advanced multidimensional data related to the propagation of urban 

areas through efficient and scalable systems, and is specifically designed for machine learning urban data. This 

architecture integrates multiple layers of functionality, from data collection to actual machine learning inference and 

prediction, into a single, streamlined pipeline. It allows preprocessing, learning, and prediction modules to integrate 

seamlessly with real-world deployment interfaces. These system features facilitate heterogeneous data input streams 

and provide the urban scenario model robust training, ensuring accuracy and responsiveness. Every element of the 

framework's architecture is modular; consequently, it is easy to customize and future-proof for additional research and 

extensions. 

This design relies on the parallel execution of multiple deep learning systems, including Artificial Neural Networks 

(ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks with Long Short-Term Memory 

(RNN-LSTM). Each model focuses on learning different aspects of signal propagation in urban areas. The ANN 

captures general nonlinear patterns, while the CNN is effective in identifying spatial correlations and surface features. 

The RNN-LSTM models temporal sequences and long-range dependencies in signals. Each of these models operates 

on its own preprocessed data, which enhances their learning capabilities while reducing mutual interference. 

The architecture can handle high-dimensional, heterogeneous datasets by applying specific preprocessing steps such 

as noise reduction, normalization, and dimensionality reduction. Notable urban features such as line-of-sight, 

construction materials, the angle of signal incidence, and spatial density are derived through feature extraction. The 

models receive clean inputs, which have undergone feature extraction and refinement to ensure they meet the 

requirements of the deep learning model’s input structures. When the models are trained, outputs are intelligently 

fused using a smart ensemble technique which predicts based on each model’s confidence and historical performance. 

This ensemble technique improves prediction accuracy tremendously and enhances the system's ability to generalize 

in unseen or changing urban layouts. The entire framework is governed by a robust evaluation mechanism that tracks 

key performance indicators, including MAE, RMSE, and R². Only models that satisfy the specified criteria are used 

in the final implementation. This ensures reliability, trust, and adaptability, while real-world smart city planning, self-

driving inter-vehicle communication systems, and forthcoming 6G wireless networks demand optimization. 
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Figure 1: End-to-End Architecture for Urban Propagation Modeling Using Ensemble Learning 

As shown in Figure 1, the proposed system architecture workflow for characterizing mm-wave and THz signals 

propagating in urban environments employs an end-to-end approach. The pipeline commences with the collection of 

raw datasets for environmental and signal parameters. The data undergoes several preprocessing steps, including 

feature selection and normalization, to enhance model compatibility and accuracy. This preprocessed data is filtered 

into three deep learning modules: ANN, RNN-LSTM, CNN. Each module is tasked with extracting temporal, spatial, 

and abstract propagation features, respectively. Each model produces a distinct output vector which, after being 

merged via an ensemble method that adjusts prediction weights based on confidence levels, is used to generate the 

final output. This predictive ensemble fusion technique enables the final prediction to leverage all the models while 

mitigating the impact of their individual biases. This result is sent to a module that combines these predictions 

according to certain probability distributions and contextual signals. The final prediction unit then delivers the 

modeled signal characteristics. A model evaluation process, which validates the ensemble outputs against real-world 

data and performance metrics, runs in parallel. The architecture allows modular deployment, scalability across various 

urban layouts, and integration into tools for planning next-generation wireless networks. 

Complex and crowded cities with towering skyscrapers and dense infrastructure make it challenging to accurately 

model how signals propagate due to ever-changing factors such as building density, construction materials, 

obstructions, and weather conditions. Deterministic or empirical models usually cannot capture these nonlinear 

relationships. To address these gaps, machine learning-based methods have surfaced because they are adept at 

identifying complex relations within vast amounts of data. Once such models are trained, their predictions can span 
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multiple situations. A detailed overview of the whole process is captured in a structured flow diagram which displays 

the steps of data collection, model creation, and prediction output within the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: ML-Based Signal Propagation Estimation Framework 

 

In Figure 2, you can see the entire operational pipeline of the signal prediction framework with the relevant machine 

learning components integrated, as previously discussed. The workflow begins with collecting historical data, which 

include the path loss values, environmental features, and other relevant situational details. These features, along with 

the observed values, are fed into various machine learning methods that predict the signal loss. After training, these 

models help create an estimation function which can be applied on new data with feature sets that were previously 

unseen. The estimation function then takes the provided data and computes the path loss values. Models used in this 

modular architecture ensure adaptability, accuracy, and scalability across multiple deployment scenarios, making it 

well-suited for evolving technologies like 5G and 6G. The diagram not only illustrates the learning process but also 

demonstrates how the trained models transition from historical data to real-time responses within dynamic 

environments. 

This proposal outlines the use of advanced machine learning techniques to accurately model the mm Wave and THz 

signal propagation mechanisms in dense urban areas. The spatially and temporally varying signal characteristics of 

urban areas pose a challenge for traditional propagation models, leading to unsatisfactory accuracy. The proposed 

system incorporates real-world data collection, data collection workflows, feature extraction, and machine learning 

techniques, such as RNN-LSTM and ensemble learning, to ensure accurate signal predictions. Utilizing environmental 

and structural features, the model can adapt to various urban contexts. The architecture is modular, scalable, and 

applicable in real-time. The reliability and efficiency of wireless network planning, particularly about 6G technology, 

will benefit from this approach. 

 

IV. RESULTS AND DISCUSSION 

 

The proposed ensemble learning model for predicting signal propagation in real-time urban settings is highly effective. 

The integration of CNN, ANN, and LSTM models allowed learning from the urban dataset’s complex spatial-temporal 

patterns. The accuracy, Mean Absolute Error (MAE), and generalization of the model's performance across different 

environments was high. Unlike older models, this one adjusts to real-time changes, such as the presence of people, 

vehicles, and construction materials. The outcome demonstrates the ability to perform reliably across different urban 

environments. In summary, the model successfully integrates physical modeling approaches with the flexibility of 

modern machine learning. 
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Table 1: Real-Time Urban Signal Propagation Dataset Structure 

Feature Description Data Type Example Values 

Timestamp Time of signal capture Date Time 2025-06-12 14:23:05 

Latitude, Longitude Location of signal measurement Float 40.7128, -74.0060 

Building Material Dominant material near receiver Categorical Concrete, Glass, Metal 

Distance to Transmitter LOS/NLOS distance to signal source (meters) Float 35.5 

Obstruction Type Type of object between Tx and Rx Categorical Tree, Wall, Car 

Signal Strength (RSSI) Measured signal strength in dBm Float -72.4 

Signal Delay Propagation delay in microseconds Float 5.2 

Reflection Coefficient Reflectivity based on surface material Float 0.38 

 

In Table 1, the most important features that define the urban signal propagation prediction machine learning model 

are given. Each feature is important for the propagation scenario and encompasses both spatial and physical aspects. 

The Timestamp feature records the time of signal measurement, which helps mitigate temporal variations such as 

heavy traffic and weather changes. Latitude and Longitude capture the geographical coordinates of the signal 

measurement, providing contextual information related to the urban layout and building density. The Building Material 

feature reflects the predominant construction material surrounding the receiver location which determines the 

reflection and absorption characteristics. 

Distance to Transmitter calculates the LOS/NLOS distance from the source, which determines path loss, non-line-of-

sight obstructions, and line-of-sight conditions. Obstruction Type describes trees, cars, walls, or any other intervening 

objects that can scatter or absorb signals. The received signal power is quantified by Signal Strength (RSSI), which is 

the main variable of interest for the prediction model. The multipath or indirect routes to the receiver contributes to 

the time taken for the signal to travel, this time is called Signal Delay. Lastly, from the electromagnetic properties of 

materials, the ability of the surface to reflect signals is defined as the Reflection Coefficient. These features together 

provide robust and context-sensitive predictive modeling. 

 
Figure 3: Comparative Performance of Individual and Ensemble Models 

 

In Figure 3, the performance of the individual model is compared with that of the proposed ensemble model. Both 

models MAE, RMSE, and R² score metrics are measured and the ensemble model is shown to outperform all single 

models. It achieved the lowest error while maintaining the highest correlation compared to the actual signal behavior. 

These results suggest that the best hybrid models which utilize both spatial pattern recognition and temporal 

sequencing outperform other models. This is attributed to the model's better generalization. Overall, the ensemble 

configuration guarantees robust and scalable predictions in urban deployments. 
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These results confirm that the proposed ensemble learning framework effectively captures real-time urban signals. 

The dataset was structured as a hybrid dataset, which enabled the precise learning of relevant propagation features and 

spatial-temporal correlations. Deep learning models have lacked ensemble multi-perspective learning, which is 

evident in the ensemble's accuracy surpassing that of standalone models by a large margin. The assessment chart 

illustrates the benefits of utilizing multiple neural networks to enhance accuracy and stability. This, along with dataset 

design, model structure, and evaluation proves that the approach provides a robust framework for urban wireless signal 

prediction. 

 

V. CONCLUSION 

 

This research develops a novel ensemble learning approach for modeling millimeter-wave (mmWave) and terahertz 

(THz) signal propagation in urban settings. The inclusion of CNN, ANN, and RNN-LSTM models enables the system 

to learn profoundly from its spatial- and time-varying signals, thereby improving predictive performance. Addressing 

traditional model limitations, the proposed method, which utilizes real-world urban data and emphasizes critical spatial 

features such as construction materials, line of sight (LOS) conditions, and urban density, effectively addresses the 

dynamic real-time model challenges. Due to its adaptability and modularity, it can be implemented in various city 

landscapes and even future network benchmarks, including 6 G networks. 

Alongside predictive performance, the model also focuses on SHAP and permutation importance to highlight key 

insights into signal propagation, thereby broadening its interpretability scope. The ensemble accuracy, alongside the 

ensemble's evaluation metrics — MAE, RMSE, and R² — confirms its performance and generalization capabilities. 

Coupled with its dependability and responsiveness, this system will greatly enhance infrastructure planning and 

optimization for urban wireless networks, including antenna positioning and real-time adaptive communication 

algorithms. This work integrates physical models with intelligent algorithms, thereby advancing the design of wireless 

communication systems. 
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