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ABSTACT: Rater-induced error significantly challenges the scoring reliability of creative mathe-

matical problem-solving assessments. This study applied Generalizability Theory to analyze score 

variance from 140 students and 3 raters across three scoring designs. The Generalizability (G) study 

revealed the person-by-rater interaction as the largest error source (35.50-35.90%), highlighting 

inconsistent rater judgments. A Decision (D) study showed that increasing raters from one to three 

substantially improved reliability (relative G-coefficient: .45 to .71). Notably, a design where each 

rater specializes in scoring specific items (p x (i:r)) yielded the highest absolute reliability (.69). 

These findings provide empirical guidance for designing effective scoring procedures to enhance 

the reliability of complex skill assessments. 
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INTRODUCTION: 

 

Creative problem-solving is recognized as a critical 21st-century competency, essential for navigating the 

complex and uncertain challenges of the future (OECD, 2018). As a discipline that fosters logical and sys-

tematic thinking, mathematics plays a pivotal role in developing this skill (Ministry of Education, 2017). 

Assessing such a complex, process-oriented skill requires instruments that allow learners to demonstrate their 

thought processes, analysis, and synthesis of ideas. Constructed-response tests are widely considered the 

most suitable tool for this purpose (Kanjanawasee, 2013). 

 However, despite their advantage in measuring higher-order thinking skills, constructed-response tests have 

a significant vulnerability that affects the reliability and fairness of the assessment: scoring error. This error 

can stem from numerous sources, particularly from the raters themselves. Factors such as inconsistency 

among different raters, or even within the same rater over time, fatigue, personal bias, and varied interpreta-

tions of scoring criteria all undermine the precision of the evaluation (Hoyt, 2000). 

 Classical Test Theory (CTT), the conventional framework for analyzing instrument quality, is limited in its 

ability to address these complex error sources. CTT aggregates all sources of error into a single value, making 

it impossible to identify the specific contribution of raters, items, or other facets to the total error variance. 

To overcome this limitation, Cronbach et al. (1972) developed Generalizability Theory (G-Theory), a more 

powerful approach to analyzing measurement reliability. G-Theory allows for the simultaneous estimation 

of error variance from multiple sources in a single analysis. It partitions the total score variance into compo-

nents attributable to persons (the object of measurement), items, raters, and the interactions among these 

facets (Brennan, 2001; Shavelson & Webb, 1991). 

 While the issue of rater-induced error is widely acknowledged, research applying G-Theory to systemati-

cally compare the effectiveness of different scoring designs for creative problem-solving assessments re-

mains limited. Most studies focus merely on increasing the number of raters without considering how the 

allocation of scoring tasks might impact reliability. This study, therefore, aims to apply Generalizability 

Theory to analyze the variance components of scores from a constructed-response test of creative mathemat-

ical problem-solving. It further seeks to identify the optimal scoring conditions—in terms of both the number 

of raters and the scoring design—to provide empirical guidance for enhancing the reliability of assessing this 

critical skill. 
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METHOD 

 

Participants 

 The sample consisted of two groups: 1) a student sample of 140 high school students from northeastern 

Thailand during the 2023 academic year, selected via multi-stage sampling, and 2) a rater sample of three 

mathematics teachers, each with at least three years of experience teaching at the high school level, selected 

based on predefined qualifications. 

Instrument 

 The primary instrument was a researcher-developed constructed-response test designed to measure creative 

mathematical problem-solving, comprising three items. Each item presented a problem scenario requiring 

the integration of mathematical knowledge in real-life contexts. An analytic scoring rubric was developed 

with four dimensions based on a synthesis of creative problem-solving models (Creative Education Founda-

tion, 2015; OECD, 2012; Parnes, 1967; Torrance, 1962; Treffinger et al., 2004) to capture both convergent 

and divergent thinking: 1) Exploring and Understanding, 2) Generating Ideas, 3) Formulating Solutions, and 

4) Verifying Solutions. The instrument underwent content validation by five experts (Item-Objective Con-

gruence [IOC] index values ranged from 0.60 to 1.00) and a try-out phase to select items with appropriate 

difficulty and discrimination indices. The overall reliability of the test (Cronbach's Alpha) was .857. 

Data Collection 

 The test was administered to the 140 student participants. All completed answer sheets were then duplicated 

and distributed to the three raters. Each rater scored every student's response on all three items according to 

the provided rubric, yielding data for a fully crossed person (p) x item (i) x rater (r) measurement design. 

Data Analysis 

Generalizability Theory (G-Theory) was employed for data analysis using the EduG software (Kanjana-

wasee, 2020). The analysis was conducted in two stages: 

1. Generalizability Study (G-Study): This stage focused on estimating the variance components at-

tributable to different sources of variation under three distinct scoring designs: 1) a fully-crossed design 

where every rater scores every item for every person (p x i x r), 2) a nested design where each person is 

scored by a different set of raters ((r:p) x i), and 3) a nested design where each rater specializes in scoring 

specific items (p x (i:r)). This analysis identified the proportion of total score variance contributed by each 

source. 

2. Decision Study (D-Study): In this stage, the variance components estimated from the G-Study 

were used to calculate Generalizability coefficients (G-coefficients) under various measurement conditions. 

This allowed for an examination of how changing the number of raters (n'r = 1, 2, 3) and the scoring design 

would affect score reliability for both relative (norm-referenced) and absolute (criterion-referenced) deci-

sions. 

 

 This study was approved by the Khon Kaen University approval no. HE663309 Written informed consent 

was obtained from parents/guardians, and assent was obtained from all student participants. All procedures 

complied with the Declaration of Helsinki and relevant institutional guidelines. Data were collected anony-

mously and stored securely.” 

 

RESULTS 

 

G-Study: Sources of Score Variation 

The estimation of variance components under the three scoring designs revealed the proportional contribu-

tion of each source to the total score variance, as summarized in Figure 1. 
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FIGURE 1  : Percentage of Variance Component Estimates by Scoring Design 

 

  Across all three designs, the variance component attributable to persons (P) was substantial and 

stable, ranging from 34.10% to 34.20%. This indicates that the test effectively differentiated among students 

based on their true ability levels. However, the most significant source of error variance was the person-by-

rater interaction (PR). 

• In the p x i x r design, the PR interaction accounted for 35.90% of the total variance. 

• In the (r:p) x i design, the R:P component (rater nested within person) accounted for 35.50%. 

• Similarly, in the p x (i:r) design, the PR interaction remained the largest component at 35.90%. 

 

D-Study: Optimizing Measurement Conditions 

The results of calculating G-coefficients under varying numbers of raters and scoring designs are presented 

in Figures 2, 3, and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2 : D-Study Results for the p x i x r Design  
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FIGURE 3 : D-Study Results for the (r:p) x i Design 

 

 
 

FIGURE 4 : D-Study Results for the p x (i:r) Design 

 

 The analysis demonstrated that increasing the number of raters from one to three substantially 

improved the G-coefficients across all designs. The relative G-coefficient, used for ranking students, in-

creased from a low of .45 to an acceptable level of .71. Concurrently, the absolute G-coefficient, crucial for 

criterion-referenced decisions, rose from .43 to a range of .66–.69. This finding confirms that employing 

multiple raters is a highly effective strategy for mitigating rater-related error variance, which was identified 

as the primary issue in the G-Study. 

  When comparing designs with three raters, a notable difference emerged for absolute decisions. 

While all three designs yielded an identical relative G-coefficient of .71, the p x (i:r) design (where raters 

specialize in specific items) produced the highest absolute G-coefficient at .69, which was markedly higher 

than the values for the p x i x r design (.66) and the (r:p) x i design (.66). 

 

DISCUSSION 

 

 This research aimed to analyze variance components and identify optimal scoring conditions for a 

constructed-response test of creative mathematical problem-solving. The findings provide two key empirical 

insights: 1) the person-by-rater interaction is the largest source of measurement error, and 2) increasing the 

number of raters while implementing an item-specialist scoring model is the most effective strategy for 

enhancing score reliability. 

The Pervasive Influence of Person-by-Rater Interaction 

 The most striking finding from the G-study is that person-by-rater interaction variance constituted over one-

third of the total variance, significantly overshadowing other error sources. This result aligns strongly with 
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a large body of research identifying rater inconsistency as a major challenge in performance-based assess-

ments (Jonsson & Svingby, 2007). This issue is particularly acute when measuring creative problem-solving, 

where responses are diverse, lack a single correct answer, and require subjective interpretation based on a 

rubric, thereby increasing the potential for discrepancies in rater judgments (Kaufman et al., 2008). The high 

PR interaction variance provides quantitative evidence that the primary problem is not that some raters are 

systematically more lenient or severe (a main effect of Rater), but rather that raters apply scoring standards 

inconsistently across different persons, directly threatening the fairness of the assessment (Brennan, 2001). 

Strategies for Enhancing Reliability: From Rater Numbers to Scoring Design 

 The D-study offers a concrete solution to the problem identified in the G-study. Increasing the number of 

raters from one to three elevates G-coefficients from a low level (< .50) to an acceptable one (> .70), provid-

ing clear evidence for the necessity of multiple raters in high-stakes assessments, as advocated by Shavelson 

and Webb (1991). 

 However, the more novel contribution of this research is the finding that the p x (i:r) design—assigning each 

rater to become an "item specialist"—yields the highest absolute reliability. This result can be interpreted 

from the perspective of cognitive load theory (Van Merriënboer & Sweller, 2005). When a rater focuses on 

applying the criteria for a single item repeatedly across many scripts, they develop expertise and apply the 

rubric more consistently. This reduces the cognitive burden and error associated with switching between the 

distinct criteria of multiple items. This aligns with previous findings by Apaikawee (2019) and Sanguanwai 

(2016). This discovery highlights that beyond the number of raters, the method of allocating scoring tasks is 

a critical factor influencing score quality, echoing the principles of efficient measurement design (Marcou-

lides, 1999). 

Implications for Practice and Theory 

 Practically, this study provides clear guidance for educators and testing agencies: for assessments requiring 

high precision for criterion-referenced decisions (e.g., grading), using three raters with each assigned to a 

specific item is the most effective configuration. It also underscores the critical importance of intensive rater 

training and calibration as an essential prerequisite for reducing the problematic PR interaction variance 

(Stemler, 2004). 

Theoretically, this research demonstrates the utility of G-Theory in dissecting complex measurement prob-

lems that CTT cannot address. By meticulously partitioning error variance, G-Theory provides targeted, data-

driven insights for improving the measurement process. 

 

 

CONCLUSION AND RECOMMENDATIONS 

  

This study successfully applied Generalizability Theory to investigate scoring error in a complex, 

constructed-response assessment. It provided empirical evidence that 1) inconsistent rater judgments are the 

most significant source of error, and 2) a systematic approach involving an increased number of raters and 

an optimized scoring design can significantly enhance measurement reliability.  

Practical Recommendations 

1. For high-stakes assessments utilizing constructed-response items, institutions should employ at 

least two, and preferably three, raters to score each response. 

2. To enhance efficiency and reduce cognitive load, an item-specialist model, where each rater is re-

sponsible for scoring only a subset of items, should be considered, particularly when absolute scores are of 

primary importance. 

3. Mandatory and rigorous rater training sessions should be conducted prior to operational scoring to 

ensure a shared understanding of the rubric and to minimize the person-by-rater interaction variance. 

Recommendations for Future Research  

1. Future studies should incorporate additional facets, such as testing occasions, to examine the sta-

bility of student performance over time. 

 

2. A comparative study analyzing the same dataset with Many-Facet Rasch Measurement (MFRM) 

could provide a more comprehensive understanding of the measurement characteristics. 

3. Research should explore the cost-benefit trade-off between the number of raters employed and the 

resulting gain in reliability to establish practical guidelines for resource allocation in different assessment 

contexts. 
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APPENDIX A 

 

Table 1 Generalizability Study (G-Study) Results: Estimated Variance Components and Percentage 

of Total Variance by Scoring Design 
 

Design 
Source of 

Variance 
df SS MS 

Estimated 

Variance 

Components 

% of total 

Variance 

P x I x R 

P 139 1861.20 13.39 1.06 34.20 

I 2 263.86 131.93 0.29 9.40 

R 2 22.50 11.25 -0.01 0.00 

PI 278 156.59 0.56 0.00 0.00 

PR 278 1079.28 3.88 1.11 35.90 

IR 4 42.28 10.57 0.07 2.30 

PIR,e 556 310.61 0.56 0.56 18.10 

Total 1259 3736.31 172.14 3.08 100 

P x (I : R) 

P 139 1861.20 13.39 1.06 34.20 

I : R 6 306.14 51.02 0.36 11.70 

R 2 22.50 11.25 -0.10 0.00 

PI : R,e 834 467.20 0.56 0.56 18.20 

PR 278 1079.28 3.88 1.11 35.90 
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Design 
Source of 

Variance 
df SS MS 

Estimated 

Variance 

Components 

% of total 

Variance 

Total 1259 3736.31 80.10 2.99 100 

(R : I) x P 

P 139 1861.20 13.39 1.06 34.10 

I 2 263.86 131.93 0.31 10.10 

R:P 280 1101.78 3.93 1.10 35.50 

PI 278 156.59 0.56 -0.02 0.00 

IR:P 560 352.89 0.63 0.63 20.30 

Total 1259 3736.31 150.45 3.08 100 

 

 
Table 2 Generalizability Coefficients and Error Variances from the Decision (D) Study by Scoring 

Design and Number of Raters 
 

  ESTIMATED VARIANCE COMPONENTS IN D-STUDY 

Design P x I x R  (R : P) x I P x (I : R) 

n’r 1 2 3 1 2 3 1 2 3 

Coef_G  

rel. 

 
0.45 0.62 0.71  0.45  0.62 0.71  0.45  0.62 0.71 

Coef_G  

abs 

 
0.43 0.58 0.66  0.43  0.58 0.66  0.43  0.60 0.69 

Rel. Err. 

Var. 

 
1.29 0.65 0.43 1.31 0.66 0.44 1.29 0.65 0.43 

Abs. Err. 

Var. 

 
1.41 0.76 0.53 1.42 0.76 0.54 1.41 0.71 0.47 

 

 

 

 


