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The seated posture is quite an important element of ergonomics at work and exercise. An 

accurate category can help in injury prevention and work-related health programs. Samples of 

30 subjects in four sitting positions were collected, and data from 7200 samples were used to 

train a lightweight CNN. In the training epochs (20-50) and batch sizes (16-32), a systematic 

search was done. The model has been contrasted with the MobileNetV2 in terms of accuracy, 

precision, recall, training time and size. The custom CNN achieved a higher accuracy across 

all the batch sizes (93.83%-99.63%) than MobileNetV2. Training time per iteration reduced 

(4.12-13.37 seconds vs. 162.88-493.59 seconds), and storage requirements were also minimal 

0.03 MB vs. 9.87 MB). The data collected was the same between trials. The findings indicate 

that the parameter tuning enhances psychometric robustness in classification. The compact 

CNN can be used to monitor sitting behaviour in real-time, direct ergonomic product design, 

prevent injuries and conduct psychologically relevant studies. 
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INTRODUCTION 

 

Prolonged sitting in incorrect postures has become a significant concern in both occupational and daily set-

tings, often leading to musculoskeletal disorders, fatigue, and long-term health issues. Many different real-

time notification sensors have been developed for ergonomic chair cushions [1]. These new sensors have 

accurate and fast response rates for delivering posture notifications [2]. Integrated flexible pressure sensors 

in ergonomic cushions play vital roles in applications related to the external environment, advanced 

healthcare, human–machine interfaces, and contact force notification sensors [3, 4]. Studies show that pro-

longed sitting decreases blood circulation, especially in the lower limbs, resulting in venous thromboembo-

lism and deep vein thrombosis [5, 6]. The diverse notifications from real-time ergonomic cushion sensors 

demonstrate: (a) highly sensitive detection; (b) sensitivity with low (less than 10 kPa) and medium pressure 

(10–100 kPa) in detecting human motions [7]. 
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The correct ergonomic posture is necessary when sitting for prolonged periods, to reduce the nega-

tive effects of workstations during the workday [8]. Research has found that young people (aged 16–19 years) 

spend approximately 7.5 hours of their day in sitting behavior and older adults (60–85 years old) spend nearly 

60% (8 hours a day) in this way [9]. Substantial daily sitting time is associated with a greater risk of muscu-

loskeletal, cardiovascular, or cerebrovascular disease (strokes), type 2 diabetes mellitus, decubitus ulcers, 

and some malignancies. Poor ergonomic sitting posture has been demonstrated to cause a variety of physical 

problems, including lower back pain, neck pain, headaches, respiratory and cardiovascular diseases, and 

digestive issues [10]. Furthermore, people’s poor ergonomic posture can be detected using novel notifica-

tions for sitting posture by sensing pressure from body segments. Recent studies indicate that poor ergonomic 

sitting postures are associated with several spinal musculoskeletal disorders, including structural deformity 

of the spine, and back pain [10, 11]. Prolonged sitting is a serious problem for both the public and clinicians, 

as metabolic abnormalities accelerate the development of cardiovascular illnesses. There is a clear need to 

develop ergonomic cushions for sitting-posture detection chair prototypes [12]. Systems for recognizing er-

gonomic sitting postures on chair cushions are being developed to monitor and evaluate an individual’s pos-

ture with real-time notifications [13]. These ergonomic sensing chairs are especially useful in healthcare 

environments, since they provide a proactive strategy for minimizing posture-related illnesses in patients 

who are unable to freuently change their posture without assistance. 

 

FIGURE 1 Cushion structure with FSR Sensors. 

 

Pressure sensors have been developed to monitor posture, placed in chair cushions for ergonomic 

purposes, with real-time notification. Such sensors include nanoribbon hybrids, triboelectricity, mechano-

acoustic systems, and bioinspired soft sensor arrays [14, 15]. With an emphasis on applying machine learn-

ing, we have studied current developments in sitting posture notification, such as posture detection, the sys-

tem architecture of cushion sensors. 

In this context, our study introduces machine learning techniques for sitting posture classification, 

specifically through the development of a Custom Lightweight CNN designed for recognizing sitting posi-

tions based on data from pressure sensors embedded in a smart cushion shows in Figure 1. These sensors 

capture real-time pressure distribution patterns corresponding to various postures. By comparing the perfor-

mance of the Custom CNN with MobileNetV2, the study aims to identify the most effective model in terms 

of classification accuracy, training time, and computational efficiency for ergonomic monitoring applica-

tions. 

 

MATERIALS AND METHODS  

 

General Framework 

The method details how sensors apply Convolutional Neural Network (CNN) training to identify 

different sitting postures. Raw sensor signals are prepared by importing files, normalizing and redistributing 

the 2D arrays corresponding to the sensor layouts to generate training-testing-validation sets. Multi-class 

data catego-rization is realized through fast encoding. CNN requires convolutional and pooling layers to 



TPM Vol. 32, No. R2, 2025      Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

 

 423 

  

extract and reduce features using them, then fully connected layer and softmax output are used. Training data 

gets the model ready prior to verification checks. Evaluation uses new data to test the model to arrive at 

accuracy, precision, recall rates and confusion matrices. The model facilitates categorization with displaying 

postural differences in terms of ergonomics, healthcare and occupational surveillance.  The framework ap-

pears in Figure 2. 

 

 
 

FIGURE 2 General Framework Structure. 

 

Convolutional Neural Network (CNN) 

Computer vision applications benefit significantly from the convolutional neural network (CNN) 

which functions as a deep learning architecture destined for spatial data including pictures and video content 

and sensor grid outputs. The architecture and functions occurring in the visual cortex serve as inspiration for 

CNNs enabling them to identify and categorize visual elements. These models serve widely for three pur-

poses that include classification and object recognition and the segmentation of objects. Model design for 

CNN depends on specific input data to establish autonomous spatial features independently from the data. 

The current research adopts CNN to function as a valuable tool that recognizes sitting postures. The system 

utilizes pressure sensor spatial data to extract critical features for robust classification operations which 

makes it suitable for posture monitoring and ergonomic evaluation and unhealthy sitting prevention. 

 

 
FIGURE 3  Custom Lightweight CNN model architecture. 

 

Based on the sitting posture classification, we applied Custom Lightweight Convolutional Neural 

Networks (Figure 3). There are three convolutional layers on the network, the final one not containing ReLU 

activation or max-pooling. The layers comprise batch normalization, ReLU activations, and max-pooling, 

with eight, sixteen and thirty-two filters that use three-by-three kernels. The overfitting is prevented using 

the Dropout in the pooling and dense layers. The network recognizes features by regularization because of 
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generalization. The full connectivity facilitates classification on the basis of convolutional features. The 

probabilities are optimized using Adam [15] in the softmax layer that outputs posture probability.  

 

 
FIGURE 4  MobileNetV2 model architecture. 

 

In multi-class classification the categorical cross-entropy loss is used. Learning procedures 16 ex-

amples, testing on validation data. There is an independent test set used to test accuracy Performance evalu-

ation is carried out with the aid of accuracy statistics and confusion matrices. MobileNetV2 also has high 

power-efficiency as evident in Figure 4. The model has accuracy via the use of Inverted Residual Blocks 

consisting of even depth-wise separable convolutions. Convolutional networks use depth wise convolutions 

and point wise convolutions to optimize. The MobileNetV2 is an off-the-shelf CNN with the input size of 

32x32 grayscale images, and labels four postures, and it is tested in an accuracy and speed pipeline. 

 

Dataset 

Thirty participants (12 males and 18 females) of ages 20-40 years, height 158-185 cm, body weight, 40-130 

kg were selected into the study. All of them were asked to take four habitual poses: upright sitting, leaning 

back; the right leg being crossed on the left leg; and vice versa. These poses were chosen to reflect common 

ergonomic habits found in the workplace and in the daily life. The sitting observations were conducted with 

a pressure sensitive and 12-force sensors embedded cushion with a sampling frequency of 50 Hz. Each po-

sition was held 60 seconds to collect adequate exchange of data. The raw data of the sensor readings was 

then formatted to a structured form and data was ready to be extracted and trained in a model. 

 

Data Preprocessing 

The most important data preparations were carried out on sensor data model usage key activities. The 12 

data points on the pressure sensor were summarized as a 3 x 4 table with the layout corresponding to the 

positions of the sensors in the CNN designs. Normalization was used to create data uniformity so as to avoid 

adverse effects of sensor volumes. Techniques of data augmentation were implemented to enhance resistance 

and application of the model. The two methods of data manipulation and augmenting noise enhanced the 

functionality of the model and helped avoid over fitting. Data organization and standards to model effec-

tiveness and assessment were ensured through preprocessing methods. 

 

Evaluation Metrics 

The metrics that have been used in this paper give an extensive analysis of the predictive power of the clas-

sification algorithms. The accuracy, the precision, the recall and the F1-score were observed to address the 

overall correctness and the sensitivity with specificity balance. Moreover, a confusion matrix along with its 

analysis has been seen to present a clear picture of classification performances in regards to the four posture 

classes and to show possible patterns of misclassification and the robustness and generalizability of the 

model.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
    (1) 

 

The precision is proportion of positively correctly detected/the total predicted positives. It shows how the 

model can minimize false positives and, thus, gauge the strength of positive predictions. That is, precision 

measures the proportion of the samples which identified the sitting posture were indicative of the posture. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (2) 
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Recall derives how successful a model is at classifying the actual positive instances as such. It tests the power 

of the model in covering all the cases of interest and hence its comprehensiveness. As discussed in the sitting 

posture classification, recall identifies the effectiveness of the model to identify the presence of each posture 

type without missing a real occurrence. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3) 

F1-score is the harmonic mean of the precision and recall and offers an average measure, weighing the trade-

off between two metrics. It is useful specifically when neccessary in seme datasets or both false positives 

and false negatives have high importance. F1-score is the way to measure how well the model in the case of 

the classification of sitting posture posture corrects the accuracy of positive prediction (precision) and a 

complete search of potentially present posture (recall). 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 

    

Confusion Matrix is a break down table because it compares the predictions of the model with the actual 

labels; it tells you about the true positives (TP), true negatives (TN), false positives (FP), and false negatives 

(FN). In the sitting posture classification, it gives a broader perspective on the accuracy of identification of 

postures and the most common identification errors. This can turn it into a reliable diagnostic tool to deter-

mine the strength of a model and decide what needs to be tuned or fixed to improve the feature extraction, 

data augmentation, or parameter set. 

Experiment Setup 

The testing of Custom Lightweight CNN and MobileNetV2 followed standard training and evaluation pro-

tocols for identifying sitting postures. Training of Custom Lightweight CNN used Adam optimizer and cat-

egorical cross-entropy loss function for multi-class classification. Training ran for 50 epochs with batch size 

32 when processing training samples. Model generalization was evaluated through validation data for pa-

rameter adjustments. Performance assessment used accuracy, precision and recall with confusion matrix for 

evaluation. The model size included parameter estimates while training efficiency measured training time 

and parameters. Training dynamics showed accuracy and loss trends from training and validation datasets 

before convergence. The four posture classes were examined through classification reports and confusion 

matrix. MobileNetV2 received the same training protocol, using Adam optimizer and categorical cross-en-

tropy for multi-class classification. Training used 50 epochs with 32-batch sizes through training-validation 

split. Evaluation metrics measured accuracy, precision and recall using confusion matrix. Assessment mon-

itored training time and model size to compare with Custom Lightweight CNN. The model's learning was 

visualized through accuracy and loss curves to understand convergence and generalization. 

 

RESULTS AND DISCUSSION 

 

Results of an experiment to create a model for sitting postures classification on a cushion from sitting data 

using four sitting postures. The researchers used Python version 3.11.5 and Keras version 3.7.0, which facil-

itated the development and execution of CNN model. 

Data Preprocessing 

An experiment has been designed to create a pressure model to identify sitting postures with the data col-

lected in a cushion. Four sitting positions were analyzed and Python version 3.11.5 and Keras version 3.7.0 

were used in the building and training of convolutional neural network (CNN) models. In the original Excel 

storage format, the dataset included 12 measures per sitting sample of pressure sensors, which were reshaped 

in the form of a 3 x 4 grid [16]. After the data reshaping, the dataset was divided into three parts: 70% of the 

data were assigned to training, 15% to validation, and the other 15% to testing. This division guaranteed 

model testing because it held out a never-before-seen dataset during training and validation [17]. The first 

difficulty with posture classification is the small size of the dataset of around 7,200 samples, that may lead 

to overfitting. To compensate this problem, the technique of dropout was adopted. Dropout adds noise to the 

activation of a proportion of neurons at random during training so that they cannot be co-adapted, and the 

performance of the generalization rises.  

Dropout layers in the CNN architecture were inserted after the pooling operations in the convolutional lay-

ers, and after the dense layers in order to make the model more reliable when doing classification tasks 

[18]. Reliable posture classification is not only a matter of technical optimization, but it is also a question 

of critical interest in ergonomics and work health. Sedentary sitting has been linked closely with musculo-
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skeletal straining, back straining, and psyche stress in the workplace and training fields. Precise identifica-

tion of sitting postures may thus be employed to guide ergonomic programs, offer biofeedback in correct-

ing postures, and prevent long-term health risks related to posture [19]. 

Model Performance 

This section compares the accuracy of the posture classification models, the MobileNetV2 and the Custom 

Lightweight CNN designed using this work. Table 1 presents the results of this performance comparison, 

where the accuracy, training time and model size of both models are compared using different epochs and 

batch sizes. The MobileNetV2 model showed variations in accuracy between 25.65 and 99.54, and exhibited 

very much longer training times between 162.88 and 493.59 seconds, but still had the same static size of 9.87 

MB. The Custom Lightweight CNN, by comparison, performed better than MobileNetV2 under all the ex-

periments, recording a steady accuracy between 93.83 and 99.63%. MobileNetV2 was demonstrated to per-

form poorly at larger batch sizes, meaning that it was not ideal to learn the posture classification with the 

relatively small and domain-oriented datasets [20]. 

 

TABLE 1 Model Performance Result 

Model ID Epochs Batch Sizes 
Acc 

(%) 

Time 

(Sec) 

Model 

Size (MB) 

MobileNetV2 1 20 16 89.3 245.7 9.87 

MobileNetV2 2 20 32 25.7 162.8 9.87 

MobileNetV2 3 30 16 73.1 343.5 9.87 

MobileNetV2 4 30 32 31.4 259.3 9.87 

MobileNetV2 5 40 16 99.5 451.4 9.87 

MobileNetV2 6 40 32 97.2 424.0 9.87 

MobileNetV2 7 50 16 97.8 601.8 9.87 

MobileNetV2 8 50 32 60.4 493.5 9.87 

CNN 1 20 16 96.7 5.8 0.03 

CNN 2 20 32 93.8 4.12 0.03 

CNN 3 30 16 98.1 8.44 0.03 

CNN 4 30 32 97.7 5.72 0.03 

CNN 5 40 16 99.1 10.8 0.03 

CNN 6 40 32 99.6 7.32 0.03 

CNN 7 50 16 99.3 13.37 0.03 

CNN 8 50 32 98.1 8.88 0.03 

 

The Custom model was also seen to be highly efficient in that it took 4.12-13.37 seconds to complete 

the training process with only 0.03 MB of storage. These findings confirm the beneficial properties of light-

weight CNNs in real-time monitoring systems, especially when used on resource-policed platforms, like 

embedded systems or IoT devices [21]. The small footprint size and rapid calculation make the model prac-

tically useful in activities that require an application of the ergonomics knowledge and feedback in time in a 

working or exercising environment, in conjunction with the current suggestions of using AI to monitor and 

schedule ergonomic dynamics [22]. Accordingly, the Custom Lightweight CNN model does not only out-

perform MobileNetV2 in accuracy and robustness but is also extremely optimized in speed and memory 

requirements, and therefore could be implemented into wearable health gadgets, smart chair furniture, and 

work ergonomics tracking solutions. 

The strong performance of the Custom Lightweight CNN has methodological and applied implications that 

are beyond computational efficiency. Psychometrically, the model was proven to be reliable and stable over 

repeated measures, which makes it apt to be used in consistently identifying the posture-related behaviours. 

The findings, in an applied psychology and ergonomics context, show the potential of the model to be used 

in real-time in terms of posture monitoring in working and exercise settings, where sedentary behavior has 

been linked to musculoskeletal disorders, a decrease in productivity and psychological stress [23]. High ac-

curacy combined with a speedy training process and limited size allows its integration into wearable devices 

and intelligent seating systems, where it continuously feeds back the biofeedback data needed to promote 

posture improvement. Such allowances add to safety protocols, work-related well-being, and enhancement 

of more healthy sitting habits, which syncs with recent trends in human-technology interaction within the 

greater study of applied psychology. 
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Comparative Analysis of MobileNetV2 and Custom Model Performance 

The comparative analysis of MobileNetV2 and the Custom Lightweight CNN can introduce important data 

regarding not only methodological robustness but also the feasibility of applying the considered method to 

the sitting posture classification. As common knowledge, MobileNetV2 shows good results in universal im-

age recognition tasks; therefore, in this domain-specific task, it showed an erratic result [24]. The range of 

the percentage scores was 25.65-99.54, and instability was highly prevalent when higher batch sizes were 

used. Such diversity indicates that ModelNetV2, though useful in large-scale vision applications, has a need 

to use large datasets to sustain performance and probably will be challenged by relatively small or targeted 

applications like pressure-sensor measurements. By comparison, the Custom Lightweight CNN obtained 

overall better results in all test variants, with an accuracy of 93.83-99.63%. Its robustness across different 

configurations proves both methodological reliability and psychometric soundness, with performance (e.g., 

F1-scores) levels remaining quite high across different runs. The reported finding is especially relevant in 

the field of applied psychology and ergonomics [25]. 

 

TABLE 2 Confusion Matrix - Custom Model ID-6 

 
Posture A Posture B Posture C Posture D 

Posture A 291 1 0 0 

Posture B 3 274 0 0 

Posture C 0 0 267 0 

Posture D 0 0 0 244 

 

The two models are differentiated by the aspect of efficiency. MobileNetV2 consumed significantly 

higher computing resources i.e., 162.88-493.59 s and an unchangeable model size is 9.87 MB. In comparison, 

Custom Lightweight CNN took 4.12 to 13.37 seconds per training cycle and 0.03 MB of storage space. These 

capabilities make the custom model a favorable solution to deploy to real-life settings where efficiency, 

flexibility and low-resource consumption are of essence [26]. Its size reduces the possibility of compatibility 

with embedded systems, wearable technologies and therefore can be used to monitor continuously in occu-

pational and exercise settings. The speed and accuracy with which the Custom Model categorizes postures 

is very important in an applied psychology and an ergonomics perspective. Overextended sedentary sitting 

has consistently been associated with musculoskeletal discomfort, back pain, and elevated mental emphasis 

in working conditions [27]. Having a lightweight, stable, and psychometrically reliable model, therefore, is 

a starting point to the development of intelligent chairs, ergonomic feedback systems and wearable posture 

monitors. 

The classification performances of the models become visible in Tables 2 and 3 through confusion matrices. 

The Custom Model (ID-6) showcases perfect classification precision through its minimal wrong identifica-

tion cases. The classification of Posture C and D produced complete accuracy by avoiding any false positive 

or negative results. The Posture A model identified all measurements correctly except a single instance 

whereas Posture B made three mistakes thus indicating consistent identification for all posture types. Mo-

bileNetV2 (ID-5) demonstrated higher unpredictability when making classifications among examples. The 

majority of predictions were accurate yet it displayed major misinterpretations of Posture B with 18 instances 

mistakenly labeled as Posture C. Furthermore, Posture A demonstrated four prediction errors where two 

cases were assigned to Posture C and two to Posture D. 

 

TABLE 3 Confusion Matrix - MobileNetV2 -ID-5 

 
Posture A Posture B Posture C Posture D 

Posture A 288 0 2 2 

Posture B 1 276 18 0 

Posture C 0 0 267 0 

Posture D 0 0 0 244 

 

TABLE 4 Performance outcomes - Custom Model ID-6 

Posture Precision Recall F1-Score 

A 0.99 1.00 0.99 

B 1.00 0.99 0.99 
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C 1.00 1.00 1.00 

D 1.00 1.00 1.00 

 

TABLE 5 Performance outcomes - MobileNetV2 ID-5 

Posture Precision Recall F1-Score 

A 1.00 0.99 0.99 

B 1.00 1.00 1.00 

C 0.99 1.00 1.00 

D 0.99 1.00 1.00 

 

The performance evaluation results in Tables 4 and 5 show the divergent outcomes between these two mod-

els. The Custom Model (ID-6) produced outstanding performance in every posture type while achieving 

precision, recall and F1-score values between 0.99 and 1.00. The model demonstrates high precision in ad-

dition to specificity, which indicates exceptionally effective posture classification. The precision and F1-

score reached 0.99 for MobileNetV2 (ID-5) across all postures except for Posture B, since it experienced 

increased misclassification events. The model displays dependable performance in Postures C and D, where 

metrics remain above 0.99, but loses reliability when trying to classify Posture B. Summarily, in spite of the 

usefulness of MobileNetV2 in broad-based vision applications, its inefficiency in terms of low data and 

targeted ergonomic applications lowers its dependability. In comparison, the Custom Lightweight CNN is 

methodologically rigorous, psychometrically reliable, and ergonomically applicable and, hence, suitable as 

a part of a continuous posture-monitoring tool in occupational and exercise science realms. 

Visualization 

The visualization of the performance of the presented models is demonstrated through Figures 5 and Figure 

6, which show the train and validation accuracy and the loss curves of a Custom Lightweight CNN. In the 

accuracy curves, there is clear improvement in accuracy over epochs where the training and validation accu-

racy change continuously to higher levels. An interesting pattern is the fact that the validation accuracy is a 

little bit higher than training accuracy, which indicates that the model not only undergoes overfitting but also 

portrays an excellent generalisation aspect to unseen data [28]. The related loss curves support this interpre-

tation. Both the training and validation loss decrease in a smooth and well-balanced manner until they reach 

minimal values. This consistency reveals that the model properly trained the features of the data without 

being infected by underfitting or overfitting.  

The homogeneous convergence profile also validates the stability and reliability of the CNN structure, which 

is especially germane to applied psychology and ergonomics where robustness to variations in users and 

conditions is a key feature needed to achieve psychometric soundness [28, 29]. These results are a method-

ological confirmation of statements about the Custom Model preserving good control over the learning pro-

cess that guarantees the successful classification of sitting postures in practice. In practice, these levels of 

stability and reliability facilitate its application into practice when postural assessments are essential in oc-

cupational and exercise environments. The MobileNetV.2 displays significant variations in its validation loss 

performance yet demonstrates a flat and low training loss pattern. The model exhibits overfitting and stability 

issues because it memorizes the training examples without gaining adequate capability to produce correct 

outputs on fresh data [30]. Training instability becomes apparent through the drastic validation loss spikes 

which stem from model complexity issues or inadequate regularization or improper hyperparameters. 

This research proves the efficiency of deep learning methodologies including CNNs towards classifying 

sitting postures through pressure sensor information. A specifically designed Custom Lightweight CNN 

demonstrated better performance than MobileNetV2 in all realms of model accuracy while achieving stable 

training and resource-saving capabilities [20]. Domain-specific compact neural networks prove suitable for 

structured low-resolution sensor data prediction specifically when used with smart cushion pressure map 

detection. The Custom Model delivers superior results because its architecture combines pressure data spatial 

elements with efficient computation operations [24, 30]. The Custom Model demonstrates optimal suitability 

for real-time ergonomic monitoring systems and embedded devices through its efficient 0.03 MB footprint 

and brief training duration. This domain did not require MobileNetV2's mobile application-specific capabil-

ities even though the architecture was originally designed for mobile needs. The extensive natural image 

training for its architecture surpassed the capabilities of the restricted structured dataset in this research. 

These issues led to inferior prediction stability and prolonged training time which negatively affected its 

potential for real-time posture monitoring.  
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(a) 

 
(b) 

FIGURE 5.   Outcome of testing model ID-6 of Custom Lightweight CNN (a) Training and Validation 

Loss and (b) Training and Validation Accuracy. 
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(a) 

 
(b) 

FIGURE 6.   Outcome of testing model ID-5 of MobileNetV2  

(a) Training and Validation Loss and (b) Training and Validation Accuracy 

 

CONCLUSION 

 

This study aimed to improve the classification of sitting position by the utilization of pressure sensor data 

and machine learning, with particular emphasis on practical applications in ergonomic contexts, including 

office situations and exercise settings. A low-weight convolutional neural network (CNN) works with the 

pressure sensor data of 30 participants in four sitting postures and shown to be effective in identifying ergo-

nomic sitting postures. With its high validity accu-racy (up to 99.63%) and an F1-score of 0.999-1.000, the 

model performed reliability throughout the different bodies and seating patterns. The tailored CNN per-

formed better in generalization and less overfitting than Mo-bileNetV2 and requires fewer computing re-

sources (0.03 MB model size and 4.12 seconds to train). The systematic machine learning architecture fosters 
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consistency in a classification endeavor, which is applied in the field of psycholo-gy. The performance of 

the CNN is high enough to be applied to practical, limited means, environments. Real-time implementation 

will be explored with the microcontrollers having the module Bluetooth or Wi-Fi. Use cases: incorporation 

in pillows that are intelligent to assist the person to have a comfortable sleeping posture to maintain and 

prevent musculoskeletal contact and injuries, integration on seats that are ergonomical so that one can sit on 

them to avoid musculoskeletal pain and injuries or put on as a wearable device monitoring posture and giving 

impulse when there is poor posture to prevent discomfort and injuries. In a future study, the dataset will be 

extended to include the broader categories of the demographic and hence reinforcing the external validity 

and to test the feasibility of applying the model to a microcontroller and a low-power device with wireless 

connectivity in real-time. These steps will also enhance psychometrically sound machine learning methods 

into occupational health, ergonomics and applied practice in the field of psychology. 
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