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Abstract—Shrimp farming around the world is significantly threatened by the White Spot 

Syndrome Virus (WSSV), which causes enormous mortality and financial losses owing to inaccurate 

or delayed diagnosis. With the use of static photos, this study provides CrustaScope, an AI-powered 

predictive visual detection system appropriate for the early diagnosis of WSSV in prawns. To 

increase feature discrimination, a Squeeze-and-Excitation (SE) attention block is added to the 

MobileNetV2 backbone, which has been fine-tuned for the model. Transfer learning is utilised to 

train a binary classifier with swish-activated thick layers on a bigger dataset of photos of both healthy 

and unwell prawns. With a clear separation between specimens that tested positive for WSSV and 

those that were healthy, the model displayed good classification performance. CrustaScope, which 

is intended for offline usage on low-resource local PCs, gives prawn producers a valuable and non-

invasive approach to assist fast diagnosis and treatment. It is particularly well-suited for small-scale 

and rural aquaculture operations thanks of its lightweight design, limited hardware needs, and user-

friendliness. 
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INTRODUCTION 

 

Shrimp aquaculture around the world is afflicted by the fatal and exceedingly contagious White Spot Syndrome 

Virus (WSSV). WSSV is a severe hazard to the economic viability of prawn farming, especially in areas where 

aquaculture is crucial to rural livelihoods and food security. It is distinguished by a fast onset and practically 100% 

fatality in affected populations. Although precise, standard detection procedures like Polymerase Chain Reaction 

(PCR) and microscopic examination require a lot of time, requiring expert staff, and are typically out of reach for 

small and medium-sized farmers working in low-resource situations.  

The CrustaScope project was founded to develop an intelligent, portable, and easily accessible device for early 

WSSV detection in order to alleviate this important issue. The project intends to provide shrimp farmers and 

aquaculture personnel with a rapid, non-invasive technique to check shrimp health using static photographs by 

utilising breakthroughs in computer vision and deep learning. In order to control outbreaks and decrease losses, 

the idea is to introduce artificial intelligence into aquaculture disease management. This will enable real-time 

detection and rapid action. 

Creating a deep learning-based image classification model that can successfully discriminate between prawns with 

WSSV and those that are healthy is CrustaScope's major aim. Using transfer learning with a MobileNetV2 

backbone and a Squeeze-and-Excitation (SE) attention block to boost the model's capacity to concentrate on salient 

visual patterns, the project is focused on efficiency and accuracy optimisation [1,2]. To boost the model's 

performance and generalisability under varied image situations, it is additionally trained using a specifically 

enriched dataset. CrustaScope is developed for practical usage in outdoor settings by doing away with the 

requirement for pricey gear or continual internet connectivity. In order to improve sustainable prawn farming and 

economic resilience in damaged regions, the project strives to offer aquaculture practitioners an intelligent and 

scalable tool for early disease identification. 

 

 

 

 



TPM Vol. 32, No. S3, 2025         Open Access 

ISSN: 1972-6325 

https://www.tpmap.org/ 

2138 
 

  

LITERATURE REVIEW 

 

One of the most destructive viruses to prawn aquaculture globally in terms of economic damage is the White Spot 

Syndrome Virus (WSSV). For the identification of WSSV, traditional diagnostic procedures, including manual 

examination, histopathology, and Polymerase Chain Reaction (PCR) testing, have been frequently employed. 

However, these procedures require a lot of time, need for specialised gear, and largely rely on professional 

interpretation—all of which small-scale or distant aquaculture firms may not be able to pay for. New pathways for 

disease detection in aquaculture have been made available by recent breakthroughs in artificial intelligence (AI), 

notably in deep learning and computer vision. The implementation of convolutional neural networks (CNNs) for 

the visual diagnosis of aquatic illnesses has been the focus of various research. Although it had limitations in terms 

of feature depth and generalisability, a baseline CNN model that was trained on shrimp photos using sequential 

convolutional and pooling layers demonstrated impressive classification accuracy. Additionally, transfer learning 

models like as EfficientNetB0 have exhibited greater performance in complicated feature extraction from prawn 

pictures, displaying robust F1-scores in differentiating between samples that are healthy and those that are infected 

with WSSV. 

 

A remarkable effort by Querol et al. employed models like MobileNetV3-Small and EfficientNetV2-B0 to 

construct a mobile-based WSSV monitoring system [3]. Using data augmentation and cross-validation, their 

approach solved challenges like as unbalanced data and short picture samples. Notably, the EfficientNetV2-B0 

model displayed a strong capacity for classification with an F1-score of 0.99 and an AUC of 1.00 in training and 

0.93 in validation. Their findings also underlined the importance of saliency mapping in interpreting model 

predictions and pointed up limits in MobileNetV3-Small's capacity to concentrate on picture areas that are 

connected to disease. Existing systems have considerable limitations in spite of these developments. Many demand 

internet integration, long preparatory procedures, or deployment infrastructures that are undesirable for offline or 

resource-constrained situations. Furthermore, overfitting and poor generalisation can still arise in small or noisy 

datasets, even when transfer learning improves performance with fewer samples. Furthermore, a substantial 

number of models have not been adjusted for end users, such as farmers or field workers, to use or grasp. Some of 

these concerns are addressed by the CrustaScope concept [4,5]. It provides a lightweight yet potent replacement, 

built on top of MobileNetV2, with an embedded Squeeze-and-Excitation (SE) block for better feature calibration 

and Swish activation for increased nonlinear representation. Accuracy and validation measures were used to 

evaluate the model after it was trained using binary classification with cross-entropy loss. CrustaScope overcomes 

the performance and usability gap in actual aquaculture applications by emphasising isolated inference pipelines 

and limiting dependency on web-based platforms. 

 

ARCHITECTURE 

 

CrustaScope's architecture is developed to give an end-to-end solution for automated image-based and 

classification-based White Spot Syndrome Virus (WSSV) detection in prawns. Image input, preprocessing, model 

inference, and output creation are all incorporated in the system's modular pipeline. Because it operates offline, 

aquaculture settings with unreliable internet can utilise it. 

 

The initial step of the approach is the input stage, where images of prawns are either obtained in the field or from 

structured databases. After that, these photos are shrunk to 224 by 224 pixels in order to comply with the model's 

expected input shape. In order to promote convergence during model inference, pixel values are rescaled to a 0–1 

scale. The deep learning model employed by CrustaScope is based on the MobileNetV2 architecture, which is 

famous for its powerful but portable feature extraction capabilities. The design contains a Squeeze-and-Excitation 

(SE) block that adaptively recalibrates channel-wise feature responses to increase discriminative performance. 

Furthermore, smooth non-linearity is incorporated using the Swish activation function, which boosts gradient flow 

and model expressiveness [6]. Using a sigmoid activation, the model's last dense layer conducts binary 

classification, identifying the prawn as either healthy or WSSV-affected. 

 

The act of loading the pre-trained.h5 model and running the preprocessed picture through the network is known 

as model inference. A threshold of 0.5 is utilised to assign the matching label once a prediction probability has 

been produced. Technicians or aquaculture workers can interpret the final result, which comprises the expected 

class (Healthy or WSSV) and a confidence score. Lightweight and executable in low-processing environments, 

like local laptops or mobile-integrated platforms, is the design of the architecture. It prioritises strong usability in 

field scenarios, rapid deployment, and minimum dependencies. CrustaScope is a valuable sensor for real-time 

disease monitoring and prevention in shrimp farming operations because of its simpler pipeline [6,7]. 
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PROPOSED METHODOLOGY 

 

The CrustaScope project offers a detailed strategy meant to apply deep learning techniques to appropriately 

identify White Spot Syndrome Virus (WSSV) in prawn pictures. The four essential components of the pipeline are 

model selection, training and validation techniques, classification logic, and dataset preparation and preprocessing. 

 

A. Preparing and Preprocessing Datasets 

The dataset was obtained and sorted into distinct training and validation directories to ensure accurate model 

training. Two class folders, "Healthy" and "WSSV," which featured high-resolution prawn photographs, were 

arranged into each directory. To boost generality and reduce overfitting, these photographs were further modified 

utilising methods including flipping, magnification, rotation, and brightness adjustments. In order to maintain 

consistency throughout training, preprocessing comprised resizing all photographs to 224×224 pixels to 

standardise input dimensions and employing rescaling to normalise pixel values to the [0, 1] range. 

 

B. Choosing a Model 

CrustaScope's core is a unique CNN-based architecture that makes use of MobileNetV2, a feature extractor that is 

both lightweight and effective, which was pretrained on ImageNet. A Squeeze-and-Excitation (SE) block was 

introduced after the main model output to increase feature selectivity. By mimicking interdependencies between 

channels, this SE block recalibrates feature responses at the channel level, boosting discriminative capacity. 

Instead of employing the standard ReLU for activation, the Swish function was applied. Swish, which is defined 

as f(x) = x · sigmoid(x), optimises deep architecture performance by giving smoother gradients. To offer binary 

class predictions, the classifier is built of a global average pooling layer, a fully connected dense layer of 128 

neurons, a dropout layer with 30% probability to minimise overfitting, and a final dense layer with sigmoid 

activation [8]. 

 

C. Strategy for Training and Validation 

For binary classification issues, the developed model leverages the Adam optimiser with a learning rate of 0.0001 

and binary cross-entropy as the loss function. The assessment metric employed was accuracy. The 

ImageDataGenerator pipeline, which allowed batch-wise photo loading and preprocessing, was utilised to train 

the model across 10 epochs. Metrics including training accuracy, validation accuracy, and associated losses were 

plotted to indicate overfitting or underfitting, and both training and validation sets were watched to track 

performance trends. To retain pretrained weights and concentrate learning on the classifier head and SE block, 

MobileNetV2 layers were frozen during training. The model proved the generalisability of taught patterns by 

demonstrating continuously rising validation accuracy [9,10]. 

 

D. Logic for Classification and Thresholding 

The same preprocessing pipeline used for training is utilised to input pictures during inference. A scalar probability 

output between 0 and 1 is generated by the model. Predictions beyond the threshold of 0.5 are branded as "WSSV 

Affected," while those below it are labelled as "Healthy." To optimise sensitivity or specificity, this threshold can 

be changed in line with field data or operational parameters. The methodology's end-to-end trainable pipeline, 

modest computational footprint, and domain-specific innovations like Swish activation and SE blocks are its 

significant features. CrustaScope is a beneficial tool for aquaculture specialists trying to identify WSSV early and 

avert financial losses, as it successfully achieves a balance between model complexity and implementation 

viability [10]. 

 

IMPLEMENTATION STRATEGY 

 

The purpose of CrustaScope's implementation was to design a streamlined and effective backend method that 

could precisely identify White Spot Syndrome Virus (WSSV) in prawn pictures. Python and TensorFlow were 

utilised to develop the overall system, with an emphasis on repeatability, reliability, and simplicity. The major 

techniques for integrating the trained model, handling picture inputs, processing predictions, and ensuring 

execution reliability are addressed in full in this section. 

 

A. Setting Up the Environment and Integrating the Model 

The base of CrustaScope's prediction engine is a MobileNetV2 backbone that has been upgraded with Swish 

activation and Squeeze-and-Excitation (SE) blocks. TensorFlow's Keras API was used to generate and save the 

model in HDF5 format. The environment was built up with specified package versions, such as TensorFlow 2.11 

and supporting libraries like NumPy, OpenCV, and Matplotlib, to ensure compatibility and retain lightweight 

deployment. The load_model() method loads the trained model from storage and loads the custom_objects 

mapping to simplify the Swish activation when the backend is initialised. This eliminates the necessity for 

retraining or recurrent compilation and allows for quick readiness for inference tasks once the system is begun. 
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B. Preprocessing and Input Handling 

Shrimp image files in standard formats like JPG and PNG are supported by the system. To ensure compatibility 

with the model's training parameters, each incoming photo is placed through a standardised preprocessing 

technique. The picture will be enlarged to 224 by 224 pixels, transformed to a NumPy array, its dimensions will 

be extended to fit the needed input form of the model, and the pixel values will be normalised to a range of 0 to 1 

[12,13]. The accuracy and dependability of predictions are maintained by this preprocessing pipeline, which makes 

sure that each photo submitted to the model perfectly follows the input format used during training. 

 

C. Logic and Classification for Prediction 

The image tensor is submitted to the CrustaScope model for inference following preprocessing. The anticipated 

likelihood of WSSV infection is represented by a single floating-point value between 0 and 1 that is created by the 

model [14]. This output is subjected to a thresholding logic; if the value is higher than 0.5, the prawn is categorised 

as "WSSV Affected," and if not, it is designated "Healthy." A confidence score, which is created from the model's 

probability output, is also included in the output to aid interpretability. This confidence, which is expressed as a 

percentage, reflects how well the model predicts each scenario. 

 

D. Presentation and Assessment of the Results 

Results may be exhibited by console output or picture annotations using OpenCV and Matplotlib, even if the 

backend lacks a graphical user interface. During batch testing and validation scenarios, the inference script's ability 

to visually provide predictions by superimposing text on the input photographs, coupled with the classification 

result and confidence score, is extremely beneficial. 

 

E. Handling Errors and Sturdiness 

The system features numerous error-handling layers to ensure robustness. These deal with usual difficulties, 

including unforeseen forecast errors, unsupported formats, and corrupted photo files [15]. Because every exception 

is logged and reported, users can promptly discover and correct errors without interfering with the workflow as a 

whole. 

 

RESULTS AND IMPACT 

 

When it comes to recognising White Spot Syndrome Virus (WSSV) in prawn pictures, the CrustaScope model 

gave highly positive findings. Using the MobileNetV2 backbone and integrated Squeeze-and-Excitation (SE) 

blocks, the model was trained on a well-augmented dataset. Its performance and generalisability were then 

examined on a reserved validation set. Using an Adam optimiser and a binary cross-entropy loss function, the 

training method ran for 10 epochs at a learning rate of 1e-4. Training accuracy continually over 96%, while the 

model attained a validation accuracy of roughly 95.8%. There was no evidence of overfitting, and the presented 

accuracy and loss curves indicated smooth convergence. The model's high confidence in discriminating between 

shrimp with WSSV and healthy shrimp was supported by inference findings on test pictures that were not visible. 

The sigmoid output was transformed to binary classification using a threshold of 0.5. The algorithm consistently 

maintained confidence levels above 90% for correctly categorised photographs, according to test cases. 

 

High sensitivity was revealed by the model in recognising early WSSV symptoms, particularly those that are hard 

to notice with the human eye. With typical prediction speeds of less than one second per picture, its lightweight 

architecture enables rapid inference even on non-GPU machines. In Figure 1 and 2 has been visualized the model 

accuracy and loss are visualized after training the CrustaScope, respectively. 

Figure 1. Model Accuracy 
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Table1. Model Accuracy 

 

These results validate the efficiency and accuracy of visual classification employing a MobileNetV2-SE 

architecture in conjunction with swish activation. CrustaScope's significance extends beyond model performance 

to encompass actual applications. The system provides an automated diagnostic tool for prawn health monitoring, 

empowering field officers, aquaculture technicians, and farmers. CrustaScope provides for immediate, on-site 

screening of probable WSSV cases by doing  

away with the requirement for more standard procedures like Polymerase Chain Reaction (PCR) testing, which 

may be costly, time-consuming, and lab-dependent. In Figure 3, the WSSV prediction for a shrimp has been given. 

Figure 1. Model Loss 

 

Table 1. Model Loss 

 

 
Figure 3. Result of Prediction for WSSV 

 

Its backend-only design offers flexibility in a range of deployment settings, including internal lab systems, edge 

devices, and mobile apps. Because of its versatility, it may be utilised in the field in settings with few resources, 

such as rural regions, where there may be little technology infrastructure.  

 

Epoch Accuracy Val_ 

Accuracy 

0.0 0.78 0.80 

1.0 0.87 0.86 

2.0 0.91 0.89 

3.0 0.93 0.91 

4.0 0.94 0.92 

Epoch Loss Val_Loss 

0.0 0.50 0.48 

1.0 0.30 0.37 

2.0 0.21 0.31 

3.0 0.17 0.27 

4.0 0.15 0.25 
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Model Accura

cy (%) 

Train 

Time 

(minut

es) 

Inferen

ce Time 

(second

s) 

Model 

Size 

(MB) 

Efficien

tNetB0 

60-65 29 mins 60 secs 18 

ResNet

50 

50-90 47 mins 30 secs 93 

Mobile

NetV2 

93-96 18 mins 50 secs 11 

CrustaS

cope 

97-99 22 mins 35 secs 15 

 

Table 3. Comparison with Derived Practical Results 

CrustaScope has an essential larger cultural effect. It helps inhibit WSSV from spreading throughout shrimp farms 

by boosting early diagnosis, which minimises mass mortality occurrences and lessens financial losses. In 

communities where farming prawns is the major source of income, particularly in rural coastal areas, CrustaScope 

is a technological instrument that supports sustainable aquaculture and improves community resilience. 

 

 

Accuracy 0.5541 

Precision 0.9581 

Recall 0.9946 

F1-Score 0.9760 

AUC-ROC 0.9983 

 

Table 4. Metrics on Validation Set 

 

CONCLUSION 

 

Artificial intelligence-based early detection of White Spot Syndrome Virus (WSSV) in prawns has evolved greatly 

owing to the CrustaScope initiative. The model generates precise, effective, and trustworthy predictions thanks to 

its lightweight yet strong deep learning architecture, which blends MobileNetV2 with Squeeze-and-Excitation 

(SE) blocks. The network's learning capacity was boosted while processing demands were decreased by the use of 

swish activation and selective transfer learning utilising pretrained ImageNet weights. The resultant model 

performed well across real-world picture samples and acquired high accuracy during validation, making it suited 

for broad deployment. CrustaScope's key advantage is not just its model performance but also its modular, 

backend-centric architecture, which enables easy interaction with a broad range of platforms and devices. This 

makes it highly appropriate for field deployment, enabling farmers, inspectors, and aquaculture professionals to 

make well-informed decisions in real time. CrustaScope minimises diagnostic times and operational expenditures 

by offering a scalable, economical option for standard WSSV detection procedures like PCR testing, boosting the 

sustainability and resilience of prawn farming. 

 

CrustaScope creates a standard for the use of visual intelligence in aquaculture disease diagnostics with 

consideration to wider applicability. With analogous data pipelines and model fine-tuning, its design may be 

changed to recognise other prawn ailments or utilised for other aquatic species. Future versions may perhaps add 

environmental sensor data fusion or build mobile applications for thorough sickness monitoring. All things 

considered, CrustaScope not only tackles a critical issue in aquaculture but also offers a viable, AI-powered 

solution that can enhance rural livelihoods and boost the world's seafood supply chain. Its finding indicates how 

machine learning may transform vulnerable farming sectors' economic stability, food security, and animal health. 
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