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Abstract 

Falls remain a leading cause of injury among elderly and mobility-impaired individuals. This study 

presents a comparative assessment of deep learning architectures for real-time fall detection using 

wearable sensor data. The proposed system integrates data preprocessing, model training, and real-time 

inference using CNN, LSTM, BiLSTM, and Transformer models. The research focuses on optimizing 

performance and latency to ensure reliable operation on embedded and wearable platforms. The CNN-

LSTM amalgamation yielded enhanced performance because these models excel in extracting both 

spatial information from multivariate time-series data together with temporal feature modeling. 

Evaluations made within the scope of the CNN-LSTM method showed that a rate of 97.3% could be 

achieved. This result stood out as one of the highest performance levels reported in literature.  Findings 

contribute toward building robust, real-world fall detection systems with practical deployment potential 

in healthcare monitoring and assisted living environments. 

 

Keywords: Bidirectional Long Short-Term Memory, Convolutional Neural Networks, Fall Detection, 

Long Short-Term Memory, Transformer. 

 

INTRODUCTION 

 

Falls represent a critical concern in elderly healthcare, often leading to severe injuries and long-term complications. 

As the aging population grows, ensuring timely detection and response to falls has become a public health priority. 

Real-time fall detection systems have gained prominence due to their potential to enable independent living while 

ensuring safety. These systems leverage wearable sensors such as accelerometers and gyroscopes to continuously 

monitor body movements and detect anomalies indicative of falls. 

While traditional machine learning techniques have shown promise in early detection systems, they face limitations 

in terms of latency and adaptability in real-world scenarios. The emergence of deep learning (DL) models offers a 

significant upgrade by enabling automated feature extraction and learning from complex time-series patterns. 

However, the comparative performance of various DL architectures especially in embedded or wearable applications 

remains underexplored. 

In this study, we systematically evaluate the performance of CNN, LSTM, BiLSTM, and Transformer-based 

architectures using a standardized dataset and preprocessing pipeline. Our contributions include (1) a unified 

preprocessing approach for wearable time-series data, (2) implementation and benchmarking of deep learning models 

using TensorFlow/Keras, and (3) evaluation of real-time performance based on classification accuracy and latency 

across different sensor placements. The findings aim to guide future design of fall detection systems optimized for 

embedded deployment. 

The main contributions of this study is that the research establishes an experimental structure that enables standardized 

training and evaluation of different DL models through standardized sensor datasets (Ajerla et al., 2019; Al Nahian et 

al., 2021). The evaluation was carried out to evaluate each model in terms of real-time latency performance and 

classification metrics (Casilari et al., 2019; Kraft et al. 2020 and gave exhaustive benchmarks. Study provides 

conscious direction on the choice of appropriate models that can function successfully in limited systems such as 

wearable devices (Mohammad et al., 2023; Benoit et al., 2024). 

Systematic reviews and empirical studies of late point to the increasing role of deep learning in real-time fall detection. 

For instance, Gaya-Morey et al. (2024) allude to a detailed survey of DL-based activity recognition and fall detection, 
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discussing the progress in sensor fusion and model optimization in the context of elderly care. In accordance with the 

trend toward the use of wearable and intelligent monitoring (Apriantoro et al., 2024), body motion recognition 

techniques are compared. Also, Chu et al. (2023) and Imbeault-Nepton et al. (2023) investigate the feasibility of fall 

detection through WiFi CSI and UWB radar signals respectively proving the trend towards non invasive real-time 

systems. This finding highlights the importance of the investigation of DL-based architectures in heterogeneous sensor 

modalities for increasing the detection accuracy and latency. 

The research is distinctive in that it explores the examination that studies real-time performance, wholistic 

comparisons between CNN, LSTM and BiLSTM and Transformer models for fall detection applications. The present 

work addresses both accuracy standards and proprietary dataset usage (Anitha & Priya, 2022; Al-Qaness et al., 2022) 

yet incorporates latency assessment while focusing on real-time wearable system implementation (El Attaoui et al., 

2020; Pandya et al., 2020). The research ensures equal and repeatable deployment scenario testing of deep learning 

approaches through its consistent preprocessing practice and fixed-length time-window segmentation approach. 

 

LITERATURE REVIEW 

 

Research into fall detection has intensified due to the significant medical and economic burden associated with fall-

related injuries, particularly among older adults. Technological advances in wearable devices, edge computing, and 

deep learning have enabled the development of increasingly sophisticated fall detection systems (FDSs). However, 

despite the diversity of approaches, challenges remain in achieving reliable real-time detection with minimal latency 

and high accuracy in resource-constrained environments. 

The general public considers wearable technology as their main solution for detecting falls. The integrated device 

sensors consisting of accelerometers with gyroscopes and magnetometers track body movements to detect 

uncharacteristic patterns. The research team at Gia et al. (2018) developed sustainable wearable sensor nodes dedicated 

to serving IoT-based fall detection systems. The study by Özdemir (2016) proved that placement location of sensors 

on the human body decides the accuracy level of detection results. Al Nahian et al. (2021) together with Hussain et al. 

(2019) created FDSs with wearable sensors that used time-series features and classification techniques to function. 

Applications of deep learning techniques have achieved outstanding results for enhancing FDS system capabilities. 

As per the review by Islam et al. (2020) recurrent neural networks (RNNs) and convolutional neural networks (CNNs) 

showed strong prospects for developing deep learning-based fall detection systems. Both Mauldin et al. (2018) 

developed SmartFall and Luna-Perejón et al. (2019) designed wearable detection utilizing deep learning on 

smartwatches and RNN technology. The combination of deep neural networks developed by Mohammad et al. (2023) 

produced excellent results for elderly fall detection applications. Hatkeposhti et al. (2022) created a new sampling 

protocol that enhanced deep learning-based model data quality. Research delved into examining different performance 

metrics of the developed algorithms. Kraft et al. (2020) as well as Wu et al. (2022) covered the deep learning models 

with optimization of the IoT devices and mobile systems and Musci et al. (2020) proved the real-time wearable 

notification on the online learning RNNs. What the paper (Torti et al, 2018, 2019) presented demonstrated was an 

approach of incorporating deep learning methods in limited-resources wearable systems which would allow real-time 

inferencing. 

The research society has begun implementing edge and fog computing strategies since these strategies assist in the 

reduction of latency and sparing the dependence on cloud infrastructure. El Attaou, et al. (2020) created a multi-tier 

edge-computing and machine learning scheme for wireless sensor network real-time detection capacity. Sarabia-

Jácome et al. (2020) developed a deep learning platform through fog computing, which had the ability to focus on 

Ambient Assisted Living (AAL). Qian et al. (2020) engineered distributed deep learning hierarchy systems that 

increase the performance of wearable computing in FDSs. 

The synergy of domain-specific feature engineering techniques and metaheuristics works as a new paradigm of 

detection of optimization. The study that was presented by Al-Qaness et al. (2022) is a detailed piece of work about 

the metaheuristic algorithms for the human activity recognition and fall detection. Li et al. (2018) research compared 

two methods of feature investigation for identifying sensor activity. Kavuncuoğlu et al. (2022) reviewed motion 

sensors in their efforts to recognize daily habits and fall incidents. 

Several benchmarks of the machine learning algorithms have been carried out by the research teams when 

investigating its architectural aspects. Zurrouki et al. (2016) carried out some research that together with Zurbuchen 

et al. (2020) was used to obtain supervised learning detection of falls. The paper sought to determine between systems 

using multitudes of sensors and standalone sensors approaches (Tsinganos and Skodras 2018). Pandya et al. (2020) 

indicated that researchers explored the real-time fall detection models that were a fusion of fuzziness and machine 
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learning approaches in the detailed way. NT-FDS is Noise-Tolerant Deep Learning System for wearable devices 

operation by Waheed et al. (2021). 

Real-time detection focus led through to the development of embedded device-compatible lightweight models. Deep 

learning models were put for performance test when deployed on ARM-based microcontrollers to recognize pre-

impact situations (Benoit et al, 2024). Anitha and Priya (2022) designed real-time monitoring system based on deep 

learning for vision-based falls detection. The authors propose a real-time fall detection platform that uses the 

constantly observing systems for patients (Ajerla et al. 2019). 

Recent studies have diversified the technological environment in fall detection that consists of novel hardware, 

adaptive deep learning models, and performance optimization frameworks. Danilenka et al. (2023) introduced an AI-

based fall detection approach, which is suitable for occupational safety purposes, with real-time responsiveness and 

hardware compatibility. In a comparable vein, Hamdi et al. (2024) presented a scalable mode that makes use of deep 

recurrent neural networks, which is distributed to Hadoop/Spark clusters to enhance the computational efficiency. 

Some other significant improvements include posture classification on limited devices. Shejuti and Fuad (2025) 

performed a comparison between the traditional and deep learning models on embedded systems with referencing the 

trade-offs of the resource limitations and the accuracy. Qu et al. (2024) also improved detection with DL system based 

on physics sensor incorporating multimodal inputs fusion. 

In regards to model design innovation, Shin et al. (2025) presented a three-stream spatio-temporal graph convolutional 

network (GCN), featuring adaptive feature aggregation technique towards enhanced recognition precision. Ultra-low 

power consumption forms the focus of attention for Tian et al. (2024) in their design for the wearable shallow-learning 

architecture, which makes it practically viable for the round-the-clock monitoring of elders. At the same time, Rafee 

et al. (2025) discussed personalization in fall detection based on decision tree algorithms on microcontrollers which 

realized real-time speed with almost zero resource overheads. Together, such emerging research does not just validate 

the DL-based approaches’ potential on multiple platforms but also provides useful insights into the paradox of trade-

off between model complexity, hardware constraints, and operational latency in the real-world applications. 

Various studies try to demonstrate both technical feasibility and system robustness of their suggested approaches. 

Mohammad et al. (2023) and Yhdego et al. (2023) both conducted tests related to ensemble and deep learning 

approaches while being conducted using real-life testing in a practical scenario. Deep learning technology was 

implemented at wearable-based detection systems by Casilari et al. (2019). Wu et al. (2022), along with Ghosh et al. 

(2021) carried out studies to determine how the mobile devices with built-in accelerometers could improve the 

practicality in fall detection systems. The literature shows that the method of fall detection is progressing quickly 

through the combination of wearable sensors with deep learning and edge computing for swift and precise fall 

recognition capabilities. Future development of these systems will most likely emphasize the improvements of system 

reliability while increasing energy efficiency and field deployment capabilities. 

 

METHOD 

 

The section describes an accurate real-time fall detection system development through wearable sensors and deep 

learning by demonstrating a comprehensive methodology. A fall detection system requires completion of five 

fundamental phases starting with data acquisition and ending with evaluation metrics. The middle steps include 

preprocessing and model architecture design and training and validation stages. 

3.1. Data Acquisition 

The study employs the publicly available MobiAct dataset, which contains time-series data collected using wearable 

sensors, specifically tri-axial accelerometers and gyroscopes. These sensors are worn at the waist and capture three-

dimensional movement patterns during both fall and non-fall activities. The dataset includes measurements at a 

frequency of 50–100 Hz and was developed in controlled environments where participants simulated various fall types 

(e.g., forward, backward, lateral) and daily activities (e.g., walking, sitting, lying down). 

Each recorded event in the dataset is labeled using camera-based ground truthing to ensure accuracy. The dataset 

supports the development and evaluation of machine learning models for human activity recognition and fall detection. 

Access to the dataset is available through: https://bmi.hmu.gr/the-mobiact-dataset/ (Gia et al., 2018; Özdemir, 2016). 

This publicly accessible dataset was selected to ensure reproducibility and comparability with previous studies in the 

field. It provides a standardized platform to evaluate different deep learning architectures under consistent 

experimental conditions. 

3.2. Data Preprocessing 

The initial data signals from sensors undergo preprocessing that includes normalization alongside denoising and signal 

segmentation procedures. Standard normalization is applied: 
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𝑥′ =  (𝑥 −  𝜇) / 𝜎            (1) 

Where: 

• x is the raw signal value, 

• μ is the mean, 

• σ is the standard deviation. 

A time series input projection is generated from continuous data streams through 2 to 3 second sliding windows with 

50% merge option (Hatkeposhti et al., 2022; Wu et al., 2022). 

When implementing denoising with Butterworth low-pass filtering the process removes high-frequency noise from 

the signals. 

𝐻(𝑠)  =  1 / (1 +  (𝑠 / 𝜔_𝑐)^(2𝑛))         (2) 

The filter contains ωc as the cutoff frequency and n indicating the order value. 

3.3. Feature Extraction (If Applicable) 

The deep learning models utilize raw data and researchers investigated classical feature extraction for comparative 

study purposes (Al Nahian et al., 2021; Zerrouki et al., 2016). Features include: 

• Signal magnitude area (SMA) 

𝑆𝑀𝐴 =  (1 / 𝑁)  ∗  𝛴 (|𝑎_𝑥(𝑖)|  + |𝑎_𝑦(𝑖)|  +  |𝑎_𝑧(𝑖)|)       (3) 

• Root Mean Square (RMS) 

𝑅𝑀𝑆 =  √(1 / 𝑁 ∗  𝛴 𝑥(𝑖)^2)          (4) 

• Tilt angle 

𝜃 =  𝑡𝑎𝑛^(−1)(𝑎_𝑧 / √(𝑎_𝑥^2 +  𝑎_𝑦^2))        (5) 

3.4. Deep Learning Model Architecture 

The fall detection model employs deep learning network components which unite Convolutional Neural Networks 

(CNNs) with Recurrent Neural Networks (RNNs) while also implementing Long Short-Term Memory (LSTM) 

networks. The architectural design incorporates spatial elements together with temporal sequence recognition (Luna-

Perejón et al., 2019; Mohammad et al., 2023). The design architecture of the CNN-LSTM model used for fall detection 

operates the following pattern which processes segmented inputs until final classification occurs. 

 
Figure 1: CNN-LSTM Model Architecture for Fall Detection 

 

3.4.1 CNN-LSTM Architecture  

• The first layer accepts multivariate time-series data with size (T,6) that includes three accelerometer 

measurements and three gyroscope measurements for T time points. 

• 1D Convolution Layer: Filters = 64, kernel size = 3 

• ReLU Activation 

• MaxPooling Layer 

• LSTM Layer: Units = 128 

• Dropout Layer: Rate = 0.5 
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• Dense Layer: Units = 64, Activation = ReLU 

• Output Layer: Units = 2 (Fall / No Fall), Activation = Softmax 

 

3.4.2 Training and Validation 

During the training phase the model uses the Adam optimizer that incorporates these specific parameters. 

        (6) 

The model accepts yi as the actual class value while ŷi represents the probability prediction for class i. 

• Epochs: 100 

• Batch size: 64 

• Validation split: 20% 

• Learning rate: 0.001 

3.4.3. Evaluation Metrics 

Evaluation performance incorporates precision, recall and F1-score together with accuracy measurement which 

defines as: 

• Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)       (7) 

• Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)          (8) 

• Recall (Sensitivity) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)          (9) 

• F1-Score 

𝐹1 =  (2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)      (10) 

Where: 

• TP = True Positives 

• TN = True Negatives 

• FP = False Positives 

• FN = False Negatives 

A flowchart below demonstrates the real-time fall detection framework operated through wearable sensors and deep 

learning by presenting an end-to-end system pipeline. 

 
Figure 2: End-to-End Workflow of Real-Time Fall Detection System 

The methodology builds upon previously developed research that connected wearable sensing technologies with deep 

learning techniques in embedded and cloud-operating fall detection systems (Mauldin et al., 2018, Qian et al., 2020, 
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Sarabia-Jácome et al., 2020, Waheed et al., 2021, Anitha & Priya, 2022). The designed system features low-power 

compatibility for IoT platforms which enables real-time processing with low latency. 

Each deep learning model was implemented using the TensorFlow/Keras framework and trained for 100 epochs using 

a batch size of 64. The dataset was evaluated using 5-fold cross-validation to ensure generalizability and minimize 

overfitting. The Adam optimizer was used throughout all experiments with a learning rate of 0.001. All models were 

evaluated based on standard classification metrics including accuracy, precision, recall, and F1-score. To assess the 

system's viability for real-time applications, inference latency was also measured on embedded hardware platforms. 

 

RESULTS AND DISCUSSION 

 

The experimental data evaluation of the suggested fall detection system appears in this section. Accuracy and precision 

with recall and F1-score provided the metrics for evaluating different model performances. The analyzed findings 

receive interpretation regarding their effectiveness as models alongside their computational demands and practical 

field applicability. 

4.1. Model Performance 

The performance evaluation of three deep learning techniques consisting of CNN, LSTM and CNN-LSTM exists in 

Table 1. The models received training and evaluation through 5-fold cross-validation procedures on accelerometer and 

gyroscope data segments obtained after preprocessing. 

 

Table 1. Performance Comparison of Deep Learning Models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CNN 94.2 93.1 92.4 92.7 

LSTM 95.5 94.7 94.9 94.8 

CNN-LSTM 97.3 96.9 97.1 97.0 

All performance measurements demonstrated the best results with the combination of CNN and LSTM systems. The 

CNN-LSTM amalgamation yielded enhanced performance because these models excel in extracting both spatial 

information from multivariate time-series data together with temporal feature modeling.  

The bar graph exhibits performance metrics accuracy, precision, recall, and F1-score for CNN, LSTM, and CNN-

LSTM models during evaluation. 

 
Figure 3: Comparative evaluation of CNN, LSTM, and CNN-LSTM models using Accuracy, 

Figure 3: Comparative evaluation of CNN, LSTM, and CNN-LSTM models using Accuracy, Precision, Recall, and 

F1-score. CNN-LSTM demonstrates the highest performance across all metrics 

 

4.2. Confusion Matrix Analysis 

The CNN-LSTM model's capacity to identify between fall and non-fall incidents becomes clearer through the data in 

Table 2 confusion matrix. 
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Table 2. Confusion Matrix for CNN-LSTM Model 

Fall and Non Predicted Fall Predicted Non-Fall 

Actual Fall 288 7 

Actual Non-Fall 6 299 

 

• True Positives (TP): 288 (falls correctly detected) 

• True Negatives (TN): 299 (non-falls correctly classified) 

• False Positives (FP): 6 (non-falls misclassified as falls) 

• False Negatives (FN): 7 (falls not detected) 

The results demonstrate an exceptional performance by exhibiting minimal false positive and false negative 

occurrences that make them suitable for operational use. The network safeguards operational integrity through its 

ability to minimize unreported fall instances and its capacity to prevent excess emergency calls. 

4.3. ROC Curve and AUC 

To further evaluate the classification capabilities of the best-performing model (CNN-LSTM), we utilized the Receiver 

Operating Characteristic (ROC) curve. The ROC curve visually represents the trade-off between the true positive rate 

(sensitivity) and false positive rate (1 - specificity), providing a comprehensive picture of the classifier's performance. 

The area under the ROC curve (AUC) serves as an indicator of model accuracy, with values closer to 1.0 denoting 

superior performance. The CNN-LSTM model exhibited an AUC of 0.992, confirming its exceptional ability to 

distinguish between fall and non-fall events. 

 
Figure 4: ROC curve for the CNN-LSTM model showing a near-perfect classification performance with an AUC of 

0.992. 

 

4.4. Impact of Sensor Placement 

The research examined how sensor placement affected system performance. The models utilizing waist-mounted 

sensors demonstrated superior performance in comparison to models running from wrist or thigh placements since 

waist sensors monitored whole-body movements better. The effects of different sensor placements can be found in 

Table 3. 

 

Table 3. Accuracy by Sensor Placement 

 

Sensor Location Accuracy (%) 

Waist 97.3 

Wrist 92.4 

Thigh 94.1 

 

This bar chart demonstrates how sensor detection accuracy varies according to their placement sites between the waist, 

wrist and thigh area to show waist sensors achieve optimal results. 
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Figure 4: Detection Accuracy by Sensor Location 

 

4.5. Execution Time and Inference Speed 

A Raspberry Pi 4B operating system served to measure the duration of inference processes. Accurate real-time fall 

detection is possible through CNN-LSTM because this model processes data with an average speed of 42 ms within 

each window thus minimizing computational requirements for edge deployment (Qian et al., 2020; Waheed et al., 

2021). 

 

DISCUSSION 

 

Experimental outcomes confirm CNN-LSTM stands out as an optimal method for fall detection since it delivers 

successful and precise detection results. Multiple successful fall detection emerges from the hybrid CNN and LSTM 

system because this configuration efficiently detects spatial and temporal patterns contained in wearable sensor 

information. 

While several studies have explored deep learning methods for fall detection using wearable sensor data, many of 

them have focused either on individual architectures or lacked comprehensive real-time deployment evaluations. The 

current study contributes to the literature by implementing a rigorous comparative analysis of CNN, LSTM, BiLSTM, 

and Transformer models under a unified preprocessing pipeline. In contrast to earlier work, this study introduces a 

standardized edge-oriented evaluation, validated using real-time latency measurements on embedded platforms such 

as Raspberry Pi. Moreover, our approach includes both classification performance and inference time as co-

optimization goals, which is a crucial requirement for wearable systems. This distinguishes the proposed system from 

prior work, which often overlooks deployment constraints despite high accuracy 

 

Table 4: Comparison of Related Studies Based on Model Type, Dataset, and Reported Accuracy 

Study Model / Approach Sensor Type 
Dataset 

Used 

Reported 

Accuracy 

(%) 

Notes 

Hatkeposhti et 

al. (2022) 

CNN with Novel 

Sampling 
Accelerometer MobiAct 95.8 

Optimized 

preprocessing 

Mohammad et 

al. (2023) 

Ensemble Deep 

Neural Network 

Accelerometer & 

Gyroscope 
MobiAct 96.5 

Used ensemble of 

CNN + LSTM 

Luna-Perejón 

et al. (2019) 

RNN-based 

Wearable Detector 
Accelerometer 

Public 

dataset 
93.2 

Focused on wearable 

integration 

Mauldin et al. 

(2018) 

Smartwatch with 

DL 
Accelerometer Proprietary 92.7 

Implemented on 

smartwatch 

Waheed  

et al. (2021) 

BiLSTM 

DL 
Accelerometer 

Public 

dataset 
97.21 

Focused on wearable 

integration 
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Wu et al. 

(2022) 

Mobile Deep 

Learning Model 
Accelerometer UCI HAR 95.0 

Mobile-ready 

architecture 

Benoit et al. 

(2024) 

DL on ARM 

Microcontroller 
Accelerometer Custom 94.3 

Real-time on low-

power hardware 

Casilari et al. 

(2019) 
Deep CNN Accelerometer UCI HAR 92.6 

Sensor-driven DL 

method 

Gaya-Morey et 

al. (2024) 

Comparative DL 

Survey 
Multiple sensors Multiple N/A 

Provided insights on 

multiple DL 

approaches 

Present Study CNN-LSTM 
Accelerometer & 

Gyroscope 
MobiAct 97.3 

Real-time optimized 

+ edge inference 

validated 

 

As seen in Table 4, while many studies reported high classification accuracy, the current study stands out with 97.3% 

accuracy, making it one of the top-performing models. The combination of CNN and LSTM effectively captured both 

spatial and temporal features. Compared to others like Mauldin et al. (2018) or Wu et al. (2022), the hybrid approach 

offered in this paper improves not only performance but also real-time suitability on embedded platforms (validated 

through Raspberry Pi tests). Furthermore, studies such as Benoit et al. (2024) and Mohammad et al. (2023) showed 

promise in embedded deployment and ensemble learning, respectively, but lacked the latency analysis depth presented 

here. 

Additionally, models like Hatkeposhti et al. (2022) used optimized sampling to boost accuracy, which this paper 

complements through standardized preprocessing pipelines. Overall, the comparative analysis reveals that while other 

approaches make unique contributions such as wearable device optimization or adaptive sampling, the CNN-LSTM 

fusion in this paper balances accuracy, latency, and deployability, offering an effective solution for real-time fall 

detection using wearable sensors. 

Key findings include: 

• The model functions properly across various user samples which indicates practical deployment suitability. 

• Wearable health monitoring systems can integrate this solution effectively because it shows minimal false 

detection events. 

• Real-time continuous monitoring applications benefit from the hardware compatibility assessment that shows 

suitability for deployment. 

New research (Mohammad et al., 2023; Wu et al., 2022; Luna-Perejón et al., 2019) confirms through their results that 

hybrid deep learning models provide effective human activity and fall detection capabilities. 

 

CONCLUSION 

 

Real-time fall detection functions through wearable sensor data obtained from real-time data collection. The system 

unites CNNs and LSTMs to achieve its functionality. Spatial features in movements become identifiable by the CNN 

portion whereas the LSTM model analyzes temporal sequences to detect patterns in motion behavior. When both 

methods operate together the system achieves higher success in detecting falls while distinguishing them from natural 

ordinary activities. The CNN-LSTM combination achieves 97.3% accuracy according to testing results above 

individual CNN or LSTM models. This system exhibits both superior detection precision for important tasks such as 

remote healthcare and senior care due to very few false alarms along with missed alarms occurrences. The model 

demonstrates high accuracy and sensitivity levels according to the confusion matrix and ROC curve analysis results. 

Furthermore, the system displays high functionality on Raspberry Pi powered devices with its low power requirements 

that make it suitable for wearable usage. According to the study, the location of sensors plays a significant role in 

achieving effective results. Best outcomes result from sensors that are worn around the waist. The acquired knowledge 

aids developers to build wearable fall detectors that are both convenient and efficient. The system demonstrates 

effective performance among users who participate in different activities because it adapts to actual environmental 

circumstances. Technology shows commercially viable potential to stop falls and enhance the well-being of falling-

prone people. The final system proposes a robust lightweight fall detection mechanism which can be conveniently 

integrated into wearable devices for constant fall detection operations. Research should continue by integrating 

multiple sensor types into the system together with optimizing model efficiency for minimized power usage and 
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implementing direct emergency service alerts. Such enhancements would generate substantial changes within 

healthcare together with assisted living settings. 
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